VIRTUAL SCREENING OF PHYTOCHEMICALS OF MORINDA CITRIFOLIA AS ANTI-INFLAMMATORY AND ANTI-ALZHEIMER AGENTS USING MOLEGRO VIRTUAL DOCKER ON p38-α MITOGEN ACTIVATED PROTEIN KINASE ENZYME

  • Devaprasad Markandeyan CHETTINAD ACADEMY OF RESEARCH AND EDUCATION, RAJIV GANDHI SALAI KELAMBAKKAM, 603103 TAMILNADU INDIA
  • Kumaran Santhalingam Departmentof Bioinformatics ,Gensilico Biosolutions,Tambaram,Chennai- 600043.Tamilnadu, India.
  • Subramaniyan Kannaiyan CHETTINAD ACADEMY OF RESEARCH AND EDUCATION, RAJIV GANDHI SALAI KELAMBAKKAM, 603103 TAMILNADU INDIA
  • Sanmathi Suresh Department of Medicine, Sri Muthukumaran Medical College, Mangadu,Chennai-602101. Tamilnadu, India
  • Benedict Paul Department of Biotechnology ,SriRamachandra University , Porur, Chennai- 600116. Tamilnadu, India.

Abstract

Objective: Pharmacological and genetic inhibition of p38α mitogen-activated protein kinase (p38α MAPK) has potential in the treatment of human
diseases such as autoimmune diseases, heart failure, Alzheimer disease, and Parkinsonism. Our aim is to do in-silico screening of phytochemicals of
Morinda citrifolia for p38α MAPK inhibitory property by docking method.
Methods: We did docking of various phytochemicals present in M. citrifolia against p38α MAPK enzyme extracted from Protein Data Bank (ID-4F9Y),
by utilizing the Molegro virtual docker Software. The docking scores of phytochemicals were compared with the scores of native reference ligands
present in the crystal structure 4F9Y.
Results: Isoprincepin and balanophonin show better docking scores when compared to reference ligands in the protein. Isoprincepin has potential
to act in a highly selective manner on p38α MAPK as it binds to Met 109 in the phylogenetically conserved kinase hinge region and thereby induces a
conformational change known as glycine flip phenomenon. Balanophonin has favorable physiochemical properties for blood-brain barrier penetration
and can act on p38α MAPK in the brain.
Conclusion: Some of the phytochemicals present in M. citrifolia have p38α MAPK binding and possible inhibitory potential.
Keywords: p38α mitogen-activated protein kinase, Isoprincepin, Balanophonin, Molegro virtual docker.

Author Biography

Devaprasad Markandeyan, CHETTINAD ACADEMY OF RESEARCH AND EDUCATION, RAJIV GANDHI SALAI KELAMBAKKAM, 603103 TAMILNADU INDIA
ASST PROFESSOR, DEPARTMENT OF MEDICINE/NEUROLOGY

References

1. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D,
et al. A protein kinase involved in the regulation of inflammatory
cytokine biosynthesis. Nature 1994;372(6508):739-46.
2. Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted
by endotoxin and hyperosmolarity in mammalian cells. Science
1994;265(5173):808-11.
3. Han J, Lee JD, Tobias PS, Ulevitch RJ. Endotoxin induces rapid protein
tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem
1993;268(33):25009-14.
4. Ono K, Han J. The p38 signal transduction pathway: Activation and
function. Cell Signal 2000;12(1):1-13.
5. Li M, Liu J, Zhang C. Evolutionary history of the vertebrate mitogen
activated protein kinases family. PLoS One 2011;6(10):e26999.
6. Liang Q, Molkentin JD. Redefining the roles of p38 and JNK signalling
in cardiac hypertrophy: Dichotomy between cultured myocytes and
animal models. J Mol Cell Cardiol 2003;35(12):1385-94.
7. Nemoto S, Sheng Z, Lin A. Opposing effects of Jun kinase and p38
mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol
Cell Biol 1998;18(6):3518-26.
8. Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, et al. Cardiac
muscle cell hypertrophy and apoptosis induced by distinct members
of the p38 mitogen-activated protein kinase family. J Biol Chem
1998;273(4):2161-8.
9. Zechner D, Thuerauf DJ, Hanford DS, McDonough PM,
Glembotski CC. A role for the p38 mitogen-activated protein kinase
pathway in myocardial cell growth, sarcomeric organization, and
cardiac-specific gene expression. J Cell Biol 1997;139(1):115-27.
10. Marber MS, Rose B, Wang Y. The p38 mitogen-activated protein kinase
pathway – A potential target for intervention in infarction, hypertrophy,
and heart failure. J Mol Cell Cardiol 2011;51(4):485-90.
11. Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA,
et al. Inhibition of p38 mitogen-activated protein kinase decreases
cardiomyocyte apoptosis and improves cardiac function after myocardial
ischemia and reperfusion. Circulation 1999;99(13):1685-91.
12. Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ. Role of p38alpha MAPK
in cardiac apoptosis and remodelling after myocardial infarction. J Mol
Cell Cardiol 2005;38(4):617-23.
13. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting
the global burden of Alzheimer’s disease. Alzheimers Dement
2007;3(3):186-91.
14. Hanger DP, Anderton BH, Noble W. Tau phosphorylation: The
therapeutic challenge for neurodegenerative disease. Trends Mol Med
2009;15(3):112-9.
15. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al.
Tau mislocalization to dendritic spines mediates synaptic dysfunction
independently of neurodegeneration. Neuron 2010;68(6):1067-81.
16. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau
protein isoforms, phosphorylation and role in neurodegenerative
disorders. Brain Res Brain Res Rev 2000;33(1):95-130.
17. Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J,
et al. The high-affinity HSP90-CHIP complex recognizes and
selectively degrades phosphorylated tau client proteins. J Clin Invest
2007;117(3):648-58.
18. Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K.
Phosphorylation of tau at both Thr 231 and Ser 262 is required for
maximal inhibition of its binding to microtubules. Arch Biochem
Biophys 1998;357(2):299-309.
19. Pyo H, Jou I, Jung S, Hong S, Joe EH. Mitogen-activated protein
kinases activated by lipopolysaccharide and beta-amyloid in cultured
rat microglia. Neuroreport 1998;9(5):871-4.
20. Munoz L, Ranaivo H, Roy S. A novel p38α MAPK inhibitor suppresses
brain proinflammatory cytokine upregulation and attenuates synaptic
dysfunction and behavioural deficits in an Alzheimer’s disease mouse
model. J Neuroinflammation 2007;4(1):84-6.
144
Asian J Pharm Clin Res, Vol 8, Issue 6, 2015, 141-145
Markandeyan et al.
21. Kim SH, Smith CJ, Van Eldik LJ. Importance of MAPK pathways for
microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol
Aging 2004;25(4):431-9.
22. Bodles AM, Barger SW. Secreted beta-amyloid precursor protein
activates microglia via JNK and p38-MAPK. Neurobiol Aging
2005;26(1):9-16.
23. Klegeris A, Pelech S, Giasson BI, Maguire J, Zhang H, McGeer EG,
et al. Alpha-synuclein activates stress signalling protein kinases in
THP-1 cells and microglia. Neurobiol Aging 2008;29(5):739-52.
24. Hoareau L, Bencharif K, Rondeau P, Murumalla R, Ravanan P,
Tallet F, et al. Signalling pathways involved in LPS induced TNFalpha
production in human adipocytes. J Inflamm (Lond) 2010;7(1):1.
25. Krauss B. Plants in Hawaiian Culture. Hawaii: University of Hawaii
Press; 1993. p. 103-25.
26. Whistler WA. Traditional and herbal medicine in the Cook Islands.
J Ethnopharmacol 1985;13(3):239-80.
27. Muralidharan P, Kumar VR, Balamurugan G. Protective effect of
Morinda citrifolia fruits on beta-amyloid (25-35) induced cognitive
dysfunction in mice: An experimental and biochemical study. Phytother
Res 2010;24(2):252-8.
28. Xu J, McSloy AC, Anderson BK, Godbee RG, Peek SF, Darien BJ.
Tahitian noni equine essentials: A novel anti-inflammatory and
a COX-2 inhibitor which regulates LPS-induced inflammatory
mediator expression in equine neonatal monocytes. J Vet Intern Med
2006;20(3):756-7.
29. Hokama Y. The effect of Noni fruit extract (Morinda citrifolia, Indian
mulberry) on thymocytes of BALB/c mouse. FASEB J 1993;7(1):866-8.
30. Thomsen R, Christensen MH. MolDock: A new technique for highaccuracy
molecular docking. J
Med
Chem 2006;49(11):3315-21.
31. Watterson DM, Grum-Tokars VL, Roy SM, Schavocky JP, Bradaric BD,
Bachstetter AD, et al. Development of novel in vivo chemical probes to
address CNS protein kinase involvement in synaptic dysfunction. PLoS
One 2013;8(6):e66226.
32. Potterat O, Hamburger M. Morinda citrifolia (Noni) fruit –
Phytochemistry, pharmacology, safety. Planta Med 2007;73(3):191-9.
33. Farine JP, Legal L, Moreteau B, Quere JL. Volatile compounds of
ripe fruits of Morinda citrifolia and their effects on Drosophila.
Phytochemistry 1996;41(1):433-8.
34. Kim SW, Jo BK, Jeong JH, Choi SU, Hwang YI. Induction of
extracellular matrix synthesis in normal human fibroblasts by
anthraquinone isolated from Morinda citrifolia (Noni) fruit. J Med
Food 2005;8(4):552-5.
35. Deng S, West BJ, Palu AK, Zhou BN, Jensen CJ. Noni as an anxiolytic
and sedative: A mechanism involving its gamma-aminobutyric
acidergic effects. Phytomedicine 2007;14(7-8):517-22.
36. Leistner E. Isolation, identification and biosynthesis of anthraquinones
in cell suspension cultures of Morinda citrifolia (author’s transl). Planta
Med 1975;Suppl:214-24.
37. Kamiya K, Tanaka Y, Endang H, Umar M, Satake T. New anthraquinone
and iridoid from the fruits of Morinda citrifolia. Chem Pharm Bull
(Tokyo) 2005;53(12):1597-9.
38. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental
and computational approaches to estimate solubility and permeability
in drug discovery and development settings. Adv Drug Deliv Rev
1997;23:3-25.
39. Yang, JM, Chen, C. GEMDOCK: A Generic Evolutionary Method for
Molecular Docking. Proteins 2004; 55:288- 304.
40. Xing L, Shieh HS, Selness SR, Devraj RV, Walker JK, Devadas B,
et al. Structural bioinformatics-based prediction of exceptional
selectivity of p38 MAP kinase inhibitor PH-797804. Biochemistry
2009;48(27):6402-11.
41. Martz KE, Dorn A, Baur B, Schattel V, Goettert MI, MayerWrangowski
SC,
et
al.
Targetting
the
hinge glycine flip
and the
activation
loop:
Novel approach to potent p38a inhibitors. J
Med
Chem
2012;55(17):7862-74.
42. Patel SB, Cameron PM, O’Keefe SJ, Frantz-Wattley B, Thompson J,
O’Neill EA, et al. The three-dimensional structure of MAP kinase
p38beta: Different features of the ATP-binding site in p38beta compared
with p38alpha. Acta Crystallogr D Biol Crystallogr 2009;65:777-85.
43. Kusakabe K, Ide N, Daigo Y, Itoh T, Higashino K, Okano Y, et al.
Diaminopyridine-based potent and selective mps1 kinase inhibitors
binding to an unusual flipped-Peptide conformation. ACS Med Chem
Lett 2012;3(7):560-4.
44. Pajouhesh H, Lenz GR. Medicinal chemical properties of successful
central nervous system drugs. NeuroRx 2005;2(4):541-53.
45. Dewachter I, Van Leuven F. Secretases as targets for the treatment of
Alzheimer’s disease: The prospects. Lancet Neurol 2002;1(7):409-16.
46. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane
Database Syst Rev 2006;(1):CD005593.
47. Köktürk S, Ceylan S, Etus V, Yasa N, Ceylan S. Morinda citrifolia L.
(noni) and memantine attenuate periventricular tissue injury of
the fourth ventricle in hydrocephalic rabbits. Neural Regen Res
2013;8(9):773-82.
48. Kumphune S, Prompunt E, Phaebuaw K, Sriudwong P, Pankla R,
Thongyoo P. Anti-inflammatory effects of the ethyl acetate extract of
Aquilaria crassna inhibits LPS-induced tumor necrosis factor-alpha
production by attenuating p38 MAPK activation. Int J Green Pharm
2011;5:43-8.
Statistics
242 Views | 434 Downloads
How to Cite
Markandeyan, D., K. Santhalingam, S. Kannaiyan, S. Suresh, and B. Paul. “VIRTUAL SCREENING OF PHYTOCHEMICALS OF MORINDA CITRIFOLIA AS ANTI-INFLAMMATORY AND ANTI-ALZHEIMER AGENTS USING MOLEGRO VIRTUAL DOCKER ON P38-α MITOGEN ACTIVATED PROTEIN KINASE ENZYME”. Asian Journal of Pharmaceutical and Clinical Research, Vol. 8, no. 6, Nov. 2015, pp. 141-5, https://innovareacademics.in/journals/index.php/ajpcr/article/view/7999.
Section
Original Article(s)