VIRTUAL SCREENING OF PHYTOCHEMICALS OF MORINDA CITRIFOLIA AS ANTI-INFLAMMATORY AND ANTI-ALZHEIMER AGENTS USING MOLEGRO VIRTUAL DOCKER ON p38-α MITOGEN ACTIVATED PROTEIN KINASE ENZYME

Authors

  • Devaprasad Markandeyan CHETTINAD ACADEMY OF RESEARCH AND EDUCATION, RAJIV GANDHI SALAI KELAMBAKKAM, 603103 TAMILNADU INDIA
  • Kumaran Santhalingam Departmentof Bioinformatics ,Gensilico Biosolutions,Tambaram,Chennai- 600043.Tamilnadu, India.
  • Subramaniyan Kannaiyan CHETTINAD ACADEMY OF RESEARCH AND EDUCATION, RAJIV GANDHI SALAI KELAMBAKKAM, 603103 TAMILNADU INDIA
  • Sanmathi Suresh Department of Medicine, Sri Muthukumaran Medical College, Mangadu,Chennai-602101. Tamilnadu, India
  • Benedict Paul Department of Biotechnology ,SriRamachandra University , Porur, Chennai- 600116. Tamilnadu, India.

Abstract

Objective: Pharmacological and genetic inhibition of p38α mitogen-activated protein kinase (p38α MAPK) has potential in the treatment of human
diseases such as autoimmune diseases, heart failure, Alzheimer disease, and Parkinsonism. Our aim is to do in-silico screening of phytochemicals of
Morinda citrifolia for p38α MAPK inhibitory property by docking method.
Methods: We did docking of various phytochemicals present in M. citrifolia against p38α MAPK enzyme extracted from Protein Data Bank (ID-4F9Y),
by utilizing the Molegro virtual docker Software. The docking scores of phytochemicals were compared with the scores of native reference ligands
present in the crystal structure 4F9Y.
Results: Isoprincepin and balanophonin show better docking scores when compared to reference ligands in the protein. Isoprincepin has potential
to act in a highly selective manner on p38α MAPK as it binds to Met 109 in the phylogenetically conserved kinase hinge region and thereby induces a
conformational change known as glycine flip phenomenon. Balanophonin has favorable physiochemical properties for blood-brain barrier penetration
and can act on p38α MAPK in the brain.
Conclusion: Some of the phytochemicals present in M. citrifolia have p38α MAPK binding and possible inhibitory potential.
Keywords: p38α mitogen-activated protein kinase, Isoprincepin, Balanophonin, Molegro virtual docker.

Downloads

Download data is not yet available.

Author Biography

Devaprasad Markandeyan, CHETTINAD ACADEMY OF RESEARCH AND EDUCATION, RAJIV GANDHI SALAI KELAMBAKKAM, 603103 TAMILNADU INDIA

ASST PROFESSOR, DEPARTMENT OF MEDICINE/NEUROLOGY

References

Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D,

et al. A protein kinase involved in the regulation of inflammatory

cytokine biosynthesis. Nature 1994;372(6508):739-46.

Han J, Lee JD, Bibbs L, Ulevitch RJ. A MAP kinase targeted

by endotoxin and hyperosmolarity in mammalian cells. Science

;265(5173):808-11.

Han J, Lee JD, Tobias PS, Ulevitch RJ. Endotoxin induces rapid protein

tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem

;268(33):25009-14.

Ono K, Han J. The p38 signal transduction pathway: Activation and

function. Cell Signal 2000;12(1):1-13.

Li M, Liu J, Zhang C. Evolutionary history of the vertebrate mitogen

activated protein kinases family. PLoS One 2011;6(10):e26999.

Liang Q, Molkentin JD. Redefining the roles of p38 and JNK signalling

in cardiac hypertrophy: Dichotomy between cultured myocytes and

animal models. J Mol Cell Cardiol 2003;35(12):1385-94.

Nemoto S, Sheng Z, Lin A. Opposing effects of Jun kinase and p38

mitogen-activated protein kinases on cardiomyocyte hypertrophy. Mol

Cell Biol 1998;18(6):3518-26.

Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, et al. Cardiac

muscle cell hypertrophy and apoptosis induced by distinct members

of the p38 mitogen-activated protein kinase family. J Biol Chem

;273(4):2161-8.

Zechner D, Thuerauf DJ, Hanford DS, McDonough PM,

Glembotski CC. A role for the p38 mitogen-activated protein kinase

pathway in myocardial cell growth, sarcomeric organization, and

cardiac-specific gene expression. J Cell Biol 1997;139(1):115-27.

Marber MS, Rose B, Wang Y. The p38 mitogen-activated protein kinase

pathway – A potential target for intervention in infarction, hypertrophy,

and heart failure. J Mol Cell Cardiol 2011;51(4):485-90.

Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA,

et al. Inhibition of p38 mitogen-activated protein kinase decreases

cardiomyocyte apoptosis and improves cardiac function after myocardial

ischemia and reperfusion. Circulation 1999;99(13):1685-91.

Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ. Role of p38alpha MAPK

in cardiac apoptosis and remodelling after myocardial infarction. J Mol

Cell Cardiol 2005;38(4):617-23.

Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting

the global burden of Alzheimer’s disease. Alzheimers Dement

;3(3):186-91.

Hanger DP, Anderton BH, Noble W. Tau phosphorylation: The

therapeutic challenge for neurodegenerative disease. Trends Mol Med

;15(3):112-9.

Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al.

Tau mislocalization to dendritic spines mediates synaptic dysfunction

independently of neurodegeneration. Neuron 2010;68(6):1067-81.

Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau

protein isoforms, phosphorylation and role in neurodegenerative

disorders. Brain Res Brain Res Rev 2000;33(1):95-130.

Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J,

et al. The high-affinity HSP90-CHIP complex recognizes and

selectively degrades phosphorylated tau client proteins. J Clin Invest

;117(3):648-58.

Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K.

Phosphorylation of tau at both Thr 231 and Ser 262 is required for

maximal inhibition of its binding to microtubules. Arch Biochem

Biophys 1998;357(2):299-309.

Pyo H, Jou I, Jung S, Hong S, Joe EH. Mitogen-activated protein

kinases activated by lipopolysaccharide and beta-amyloid in cultured

rat microglia. Neuroreport 1998;9(5):871-4.

Munoz L, Ranaivo H, Roy S. A novel p38α MAPK inhibitor suppresses

brain proinflammatory cytokine upregulation and attenuates synaptic

dysfunction and behavioural deficits in an Alzheimer’s disease mouse

model. J Neuroinflammation 2007;4(1):84-6.

Asian J Pharm Clin Res, Vol 8, Issue 6, 2015, 141-145

Markandeyan et al.

Kim SH, Smith CJ, Van Eldik LJ. Importance of MAPK pathways for

microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol

Aging 2004;25(4):431-9.

Bodles AM, Barger SW. Secreted beta-amyloid precursor protein

activates microglia via JNK and p38-MAPK. Neurobiol Aging

;26(1):9-16.

Klegeris A, Pelech S, Giasson BI, Maguire J, Zhang H, McGeer EG,

et al. Alpha-synuclein activates stress signalling protein kinases in

THP-1 cells and microglia. Neurobiol Aging 2008;29(5):739-52.

Hoareau L, Bencharif K, Rondeau P, Murumalla R, Ravanan P,

Tallet F, et al. Signalling pathways involved in LPS induced TNFalpha

production in human adipocytes. J Inflamm (Lond) 2010;7(1):1.

Krauss B. Plants in Hawaiian Culture. Hawaii: University of Hawaii

Press; 1993. p. 103-25.

Whistler WA. Traditional and herbal medicine in the Cook Islands.

J Ethnopharmacol 1985;13(3):239-80.

Muralidharan P, Kumar VR, Balamurugan G. Protective effect of

Morinda citrifolia fruits on beta-amyloid (25-35) induced cognitive

dysfunction in mice: An experimental and biochemical study. Phytother

Res 2010;24(2):252-8.

Xu J, McSloy AC, Anderson BK, Godbee RG, Peek SF, Darien BJ.

Tahitian noni equine essentials: A novel anti-inflammatory and

a COX-2 inhibitor which regulates LPS-induced inflammatory

mediator expression in equine neonatal monocytes. J Vet Intern Med

;20(3):756-7.

Hokama Y. The effect of Noni fruit extract (Morinda citrifolia, Indian

mulberry) on thymocytes of BALB/c mouse. FASEB J 1993;7(1):866-8.

Thomsen R, Christensen MH. MolDock: A new technique for highaccuracy

molecular docking. J

Med

Chem 2006;49(11):3315-21.

Watterson DM, Grum-Tokars VL, Roy SM, Schavocky JP, Bradaric BD,

Bachstetter AD, et al. Development of novel in vivo chemical probes to

address CNS protein kinase involvement in synaptic dysfunction. PLoS

One 2013;8(6):e66226.

Potterat O, Hamburger M. Morinda citrifolia (Noni) fruit –

Phytochemistry, pharmacology, safety. Planta Med 2007;73(3):191-9.

Farine JP, Legal L, Moreteau B, Quere JL. Volatile compounds of

ripe fruits of Morinda citrifolia and their effects on Drosophila.

Phytochemistry 1996;41(1):433-8.

Kim SW, Jo BK, Jeong JH, Choi SU, Hwang YI. Induction of

extracellular matrix synthesis in normal human fibroblasts by

anthraquinone isolated from Morinda citrifolia (Noni) fruit. J Med

Food 2005;8(4):552-5.

Deng S, West BJ, Palu AK, Zhou BN, Jensen CJ. Noni as an anxiolytic

and sedative: A mechanism involving its gamma-aminobutyric

acidergic effects. Phytomedicine 2007;14(7-8):517-22.

Leistner E. Isolation, identification and biosynthesis of anthraquinones

in cell suspension cultures of Morinda citrifolia (author’s transl). Planta

Med 1975;Suppl:214-24.

Kamiya K, Tanaka Y, Endang H, Umar M, Satake T. New anthraquinone

and iridoid from the fruits of Morinda citrifolia. Chem Pharm Bull

(Tokyo) 2005;53(12):1597-9.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental

and computational approaches to estimate solubility and permeability

in drug discovery and development settings. Adv Drug Deliv Rev

;23:3-25.

Yang, JM, Chen, C. GEMDOCK: A Generic Evolutionary Method for

Molecular Docking. Proteins 2004; 55:288- 304.

Xing L, Shieh HS, Selness SR, Devraj RV, Walker JK, Devadas B,

et al. Structural bioinformatics-based prediction of exceptional

selectivity of p38 MAP kinase inhibitor PH-797804. Biochemistry

;48(27):6402-11.

Martz KE, Dorn A, Baur B, Schattel V, Goettert MI, MayerWrangowski

SC,

et

al.

Targetting

the

hinge glycine flip

and the

activation

loop:

Novel approach to potent p38a inhibitors. J

Med

Chem

;55(17):7862-74.

Patel SB, Cameron PM, O’Keefe SJ, Frantz-Wattley B, Thompson J,

O’Neill EA, et al. The three-dimensional structure of MAP kinase

p38beta: Different features of the ATP-binding site in p38beta compared

with p38alpha. Acta Crystallogr D Biol Crystallogr 2009;65:777-85.

Kusakabe K, Ide N, Daigo Y, Itoh T, Higashino K, Okano Y, et al.

Diaminopyridine-based potent and selective mps1 kinase inhibitors

binding to an unusual flipped-Peptide conformation. ACS Med Chem

Lett 2012;3(7):560-4.

Pajouhesh H, Lenz GR. Medicinal chemical properties of successful

central nervous system drugs. NeuroRx 2005;2(4):541-53.

Dewachter I, Van Leuven F. Secretases as targets for the treatment of

Alzheimer’s disease: The prospects. Lancet Neurol 2002;1(7):409-16.

Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane

Database Syst Rev 2006;(1):CD005593.

Köktürk S, Ceylan S, Etus V, Yasa N, Ceylan S. Morinda citrifolia L.

(noni) and memantine attenuate periventricular tissue injury of

the fourth ventricle in hydrocephalic rabbits. Neural Regen Res

;8(9):773-82.

Kumphune S, Prompunt E, Phaebuaw K, Sriudwong P, Pankla R,

Thongyoo P. Anti-inflammatory effects of the ethyl acetate extract of

Aquilaria crassna inhibits LPS-induced tumor necrosis factor-alpha

production by attenuating p38 MAPK activation. Int J Green Pharm

;5:43-8.

Published

01-11-2015

How to Cite

Markandeyan, D., K. Santhalingam, S. Kannaiyan, S. Suresh, and B. Paul. “VIRTUAL SCREENING OF PHYTOCHEMICALS OF MORINDA CITRIFOLIA AS ANTI-INFLAMMATORY AND ANTI-ALZHEIMER AGENTS USING MOLEGRO VIRTUAL DOCKER ON p38-α MITOGEN ACTIVATED PROTEIN KINASE ENZYME”. Asian Journal of Pharmaceutical and Clinical Research, vol. 8, no. 6, Nov. 2015, pp. 141-5, https://journals.innovareacademics.in/index.php/ajpcr/article/view/7999.

Issue

Section

Original Article(s)