OYSTER MUSHROOM: ANSWER TO HUMANAILMENTS

SHARMA ANJANA1, JANDAIK SAVITA**

1Department of Microbiology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India. 2Department of Plant Pathology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India. Email: drsavitajandaik@gmail.com

ABSTRACT

Oyster mushroom is consumed all over the world due to its taste, flavor, high nutritional value, and some medicinal properties. Many species of this genus are rich in proteins with essential amino acids, polysaccharides, essential amino acids, dietary fibers, important minerals, and some vitamins. Because of this nutritional composition and presence of bioactive molecules, oyster mushroom has been reported to have anticancer, antihypertensive, hypcholesteremic, antidiabetic, antiobesity, antiaging, antimicrobial, and antioxidant activities. The high nutritional value and potent medicinal uses suggest that Pleurotus mushrooms are important functional foods or nutraceuticals.

Keywords: Oyster mushroom, Pleurotus species, Medicinal value, Human ailments, Antimicrobial activities.

INTRODUCTION

Species of Pleurotus, commonly called oyster mushrooms, consist of gilled mushrooms that have an eccentric or lateral stem or are laterally or dorsally attached and sessile [1]. Pleurotus species are distributed throughout the temperate and tropical hardwood forests of the world [2]. Fungal populations are established and developed in nature through both sexual and asexual reproduction [3].

The genus Pleurotus is one of the most diverse groups of cultivated mushrooms that have important economic and medicinal value [3]. One of the reasons for their success is that oyster mushrooms are by far the easiest and least expensive to grow of all industrially cultivated edible mushrooms [2], and they grow on a number of different plant substrates. As food, the oyster mushrooms are a good source of non-starchy carbohydrates, have a high content of dietary fiber, and contain moderate quantities of good quality proteins and most of the essential amino acids, minerals, and vitamins [2].

MEDICINAL USES OF PLEUROTUS

A number of medicinal properties have been attributed to Pleurotus species. Pleurotus spp. have been shown to modulate the immune system, have hypoglycemic activity and antihypermobiotic effects, lower blood pressure, and blood lipid concentrations, and inhibit tumor growth, inflammation, and microbial activity [4-6]; Lectin and lovastatin are therapeutic compounds isolated from Pleurotus species. Lectins are carbohydrate-containing proteins of non-immune origin that agglutinate cells or precipitate polysaccharides or glycoconjugates [7]. Kaneko et al. examined hemagglutinating activity in crude extracts prepared from four fungal developmental stages; vegetative mycelium, primordium, immature fruit body, and mature fruit [8]. Lectin activity was not seen in vegetative mycelium but increased through the other three fungal developmental stages. In a study conducted by Sathiyapraba et al. [9] Pleurotus platypus and Pleurotus eous were extracted with pure ethanol and subjected to screening of bioactive compounds by gas chromatography-mass spectrum technique; according to their results, various active compounds are presented in P. platypus when compared with P. eous.

Lakshmanan and Radha produced lovastatin from Pleurotus ostreatus by high-performance liquid chromatography. Lovastatin is a potent hypocholesterolemic agent [10]. This low-molecular-weight substance is a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR-CoA reductase), the key enzyme in cholesterol metabolism that catalyzes the reduction of HMGR-CoA into mevalonate [10]. The best known organism for the potential production of lovastatin is edible higher basidiozyme mushrooms is species of the genus Pleurotus (P. ostreatus, Pleurotus cornucopiae, Water-insoluble glucans, and Pleurotus sapidus) [11]. Pleurotus is not seen in vegetative mycelium but increased through the connected fruit body [8].

Though oyster mushroom is the third important mushroom of culinary value, there has been a surge in Pleurotus mushroom research activities in the last two decades not only for its nutritional and medicinal values but also many other biopotentialities of Pleurotus species such recycling of comprehensive account of nutritional with some medicinal agricultural residues [12,14], bioconversion of ligno-aspects of Pleurotus species [15,16], production or improved animal feed [17], bioremediation and bioconversion of xenobiotics [18,19], degradation of industrial dye [20,21], bioremediation [12,22], degradation of xenobiotics [23,24], bioconversion of lignocellulosic wastes [25], enzyme production [26,27], etc. Medicinal attributes of Pleurotus species are given below.

Antimicrobial activity

Pleurotus species have been found to combat simple and multiple drug-resistant isolates of Escherichia coli, Staphylococcus epidermidis, and Staphylococcus aureus [28] and species of Candida [29], Streptococcus, and Enterococcus [30-33]. Methanolic extracts of Pleurotus species demonstrated an inhibition in growth of Bacillus megaterium, S. aureus, E. coli, Klebsiella pneumoniae, Candida albicans, Candida glabrata, species of Trichophyton and Epidermophyton to different degrees that were lower with respect to two antifungal agents: Streptomycin and nystatin [28]. The petroleum ether extract of the P. eous possessed strong antibacterial activity against both Gram-positive and Gram-negative bacteria, and the growth of foodborne pathogens can be inhibited when P. eous is added as an extra nutrient in food products [34]. Mustafa et al. [32] reported that liquid filtrate of Pleurotus salmonostreatus showed maximum inhibition against Pseudomonas aeruginosa ATCC 27853 and Candida parapsilosis ATCC 2201 and
mycelia of *P. cornucopiae* showed 5.21% and 29.19% inhibition against *Enterococcus faecalis* ATCC 29212 and yeast *C. parapsilosis* ATCC 22019.

Antiviral activity

Pleurotus mushroom contains substances exert direct or indirect antiviral effects as a result of the stimulatory activity [35]. Ubiquitin, an antiviral protein, was isolated and identified from fruiting body of oyster mushroom [36]. Water-insoluble Water-insoluble glucans isolated from sclerotia of *Pleurotus tuber-regium* and their corresponding water-soluble sulfated derivatives were active against type-1 and type-2 [20,37]. Antiviral activity was due to binding of S-glucans to viral particles, thereby preventing them from infecting the host cells [20]. Not only intracellular proteins of *P. ostreatus* but its extracellular extract also contains polysaccharides that have T immunomodulating effects.

Antihuman immunodeficiency virus (HIV) activity

A lung ribonucleases (RNases; mol. wt. 10.7 kDa) have isolated and characterized from the *P. ostreatus* [38] that has the potentiality to neutralize HIV through degradation of viral genetic material. On the other hand, RNases (mol wt. 14.5 kDa) were isolated and characterized from sclerotia of *P. tuber-regium*, exhibited very stable nuclease activity at 100°C for 30 minutes. On the other hand, RNases (mol. wt. 14.5 kDa) were isolated and characterized from sclerotia of *P. tuber-regium*, exhibited very stable nuclease activity at 100°C for 30 minutes with a higher ribonuclease activity toward poly-G [39,40,41]. Another ribonuclease, pleuroturan, was also isolated from both fresh and dried sclerotia of *P. tuber-regium* [17]. Later, in [19] the fruiting bodies of oyster mushroom, they observed a novel-like protein having HIV-1 reverse transcriptase reported inhibitory activity [18]. Similarly, hot water extracts of *P. sajor-caju* and *P. pulmonarius* inhibit HIV-1 reverse transcriptase activity by SU2 molecule having 4.5 kDa mol. wt. [61].

Pleurotus sajor-caju and *Pleurotus pulmonarius* inhibit HIV-1 reverse transcriptase activity by SU2 molecule having 4.5 kDa mol. wt. [42]. A lectin isolated from fresh fruiting bodies of *Pleurotus citrinopileatus* also inhibited HIV-1 reverse transcriptase [19].

Antioxidant Activity

Fruiting bodies of *Pleurotus* possessed higher concentration of antioxidants than other commercial mushrooms [43-45]. The crude polysaccharide of *P. ostreatus* had a good antioxidant property and nitric oxide synthase activation power [46]. *P. ostreatus* increased the activities of important antioxidant enzymes (viz. superoxide dismutase, catalase, and peroxidase), thereby reducing oxidative damage in humans [44,47]. Oyster mushrooms are now widely used as ingredients in dietary supplements in the hope of maintaining health and preventing diseases [48] due to their higher free radical scavenging activities. The antioxidant activity of cultured mycelia of ten species of the oyster mushroom, *Pleurotus* species, namely, *P. ostreatus*, *P. flabellatus*, *P. sapidus*, *P. citrinopileatus*, *Pleurotus roseus*, *P. sajor-caju*, *Pleurotus florida*, *Pleurotus cytidiosus*, *Pleurotus fuscatus*, and *Pleurotus Eryngii*, was studied by Nitha et al. [49] and found that out of the ten species studied all except *P. roseus* scavenged hydroxyl radicals, and the maximum activity was showed by *P. sajor-caju* (76.17%). These free radical scavenging activities of oyster mushrooms depend on the color of fruiting bodies as per Yang et al. [44]. Fruiting bodies of oyster mushroom have higher phenol concentration when compared with mycelium and fermentation broth filtrate of *P. citrinopileatus* [50,51]. Salma et al. [52] showed that reducing power, chelating activity on Fe²⁺, and total phenol content were higher in *P. floridio* than in *P. pulmonarius* and *P. citrinopileatus*. *P. floridio* had highest peroxidase and superoxide dismutase activity as compared to *P. pulmonarius*. Methanolic extract of *P. floridio* has significant antioxidant activity and serves as easily accessible antioxidant rich food for enhancing immune system against oxidative stress [49].

Antilipidemic activity

Hyperlipidemia is the leading risk factor for atherosclerosis. Feeding of mushroom powder increases the excretion of total lipids and cholesterol through fecal matter. Mevinolin (a statin: Present in fruiting bodies of *P. ostreatus* and *P. citrinopileatus*) exhibited antihypercholesterolemic activities [54,55]. *P. pulmonarius* exhibited potent Synergistic antihyperglycemic effect when used in combination with glyburide [56]. Recent report produced by Alam et al. [57] reported that when fruiting bodies of *Pleurotus ferulae* reduced the total cholesterol in plasma, triglyceride, low-density lipoprotein, total lipid, phospholipids, etc., whereas 5% mushroom powder of *P. salmoneostamines* reduced total lipid, phospholipids, and low-density lipoprotein (LDL); high-density lipoprotein (HDL) ratio by 29.67, 16.61, and 65.31%, respectively [53].

Anti-inflammatory activity

Pleuran isolated from fruiting bodies of oyster mushroom possesses anti-inflammatory activity [46]. Extracts of many of them, for example, *P. florida* and *P. pulmonarius*. Give a lowering response in both acute as well as in chronic inflammation [45,46] and when oral or percutaneous administration of extract of *P. eryngii* was done, it suppresses the inflammation in delayed type (type IV hypersensitive) allergy response in mice [58, 59].

Hepatoprotective activity

Pleurotus species contain some active compounds such as -glucan, phoenol, and vitamin C that increase the activity of antioxidant enzymes, namely, catalase and superoxide dismutase; these enzymes are responsible for reduction of hepatic cell necrosis [60,61]. Hepatoprotective activity of this mushroom is exerted through increased levels of serum aminotransferase enzymes in animals [50,62]. Recently, Chen et al. [63] observed that water-soluble polysaccharides extracted from *P. eryngii* remove the free radicals and also increase the activities of antioxidant enzymes in liver injury mouse model.

Hypocholesterolemic activity

Preliminary reports indicated that diet containing 4-10% dried fruiting body of *Pleurotus* leukocyte show more reduction in the arterial pressure. Recently, a blood cholesterol level when compared to normal diet by Chen et al. In rabbits and rats [64-66], lovastatin, a drug, used in the lowering blood cholesterol level, produced by *P. ostreatus* was approved by FDA in 1987. When dried mushroom mixed in the diet of experimental animal acted as accelerator of HDL reduced production of very LDL, high-density lipoprotein, and reduced cholesterol absorption, and reduced HMGC-GA reductase activity in the liver [67].

Antiaging activity

Extracts of *Pleurotus abalonus* elevated levels of vitamin C and E, increased activities of catalase, superoxide dismutase, and glutathione peroxidase in aged rats [68]. Similar results were obtained with the extracts of *P. ostreatus* [69]. These enzymes are known potent antioxidant enzymes [46,47]. The levels of malondialdehyde, a polysaturated lipid, and an electrophilic mutagen were lowered on the administration of mushroom extract to aged rats [70] that reacted with deoxyadenosine and deoxyguanosine in DNA, forming a DNA adduct.

Antitumor activity

Hot water extract showed a remarkable host. The mediated antitumor activity against sarcoma, S-180, extracted from the fruiting body of *Pleurotus* species contain some active compounds such as -glucan, phoenol, and vitamin C that increase the activity of antioxidant enzymes, namely, catalase and superoxide dismutase; these enzymes are responsible for reduction of hepatic cell necrosis [60,61]. Hepatoprotective activity of this mushroom is exerted through increased levels of serum aminotransferase enzymes in animals [50,62]. Recently, Chen et al. [63] observed that water-soluble polysaccharides extracted from *P. eryngii* remove the free radicals and also increase the activities of antioxidant enzymes in liver injury mouse model.

Hypocholesterolemic activity

Preliminary reports indicated that diet containing 4-10% dried fruiting body of *Pleurotus* leukocyte show more reduction in the arterial pressure. Recently, a blood cholesterol level when compared to normal diet by Chen et al. In rabbits and rats [64-66], lovastatin, a drug, used in the lowering blood cholesterol level, produced by *P. ostreatus* was approved by FDA in 1987. When dried mushroom mixed in the diet of experimental animal acted as accelerator of HDL reduced production of very LDL, high-density lipoprotein, and reduced cholesterol absorption, and reduced HMGC-GA reductase activity in the liver [67].

Antiaging activity

Extracts of *Pleurotus abalonus* elevated levels of vitamin C and E, increased activities of catalase, superoxide dismutase, and glutathione peroxidase in aged rats [68]. Similar results were obtained with the extracts of *P. ostreatus* [69]. These enzymes are known potent antioxidant enzymes [46,47]. The levels of malondialdehyde, a polysaturated lipid, and an electrophilic mutagen were lowered on the administration of mushroom extract to aged rats [70] that reacted with deoxyadenosine and deoxyguanosine in DNA, forming a DNA adduct.

Antitumor activity

Hot water extract showed a remarkable host. The mediated antitumor activity against sarcoma, S-180, extracted from the fruiting body of *Pleurotus* family due to the presence of -D-glucan [72]. These enzymes are known potent antioxidant enzymes [46,47]. The levels of malondialdehyde, a polysaturated lipid, and an electrophilic mutagen were lowered on the administration of mushroom extract to aged rats [70] that reacted with deoxyadenosine and deoxyguanosine in DNA, forming a DNA adduct.

Antitumor activity

Hot water extract showed a remarkable host. The mediated antitumor activity against sarcoma, S-180, extracted from the fruiting body of *Pleurotus* species contain some active compounds such as -glucan, phoenol, and vitamin C that increase the activity of antioxidant enzymes, namely, catalase and superoxide dismutase; these enzymes are responsible for reduction of hepatic cell necrosis [60,61]. Hepatoprotective activity of this mushroom is exerted through increased levels of serum aminotransferase enzymes in animals [50,62]. Recently, Chen et al. [63] observed that water-soluble polysaccharides extracted from *P. eryngii* remove the free radicals and also increase the activities of antioxidant enzymes in liver injury mouse model.
REFERENCES

26. Selina K, Anminil I, Urgo C, Perihan G, Narayana CC. Nutritional...

