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EFFICIENT FLOATING POINT FAST FOURIER TRANSFORM BUTTERFLY ARCHITECTURE 
USING BINARY SIGNED DIGIT MULTIPLIER AND ADDERS

SHIVANI ACHARYA, AUGUSTA SOPHY BEULET P

ABSTRACT

Fast Fourier transform (FFT) is one of the most important tools in digital signal processing as well as communication system because transforming 
time domain to S-plane is very convenient using FFT. As FFT uses various techniques to convert a signal from time domain to S-domain and inverse, 
out of which butterfly technique is the one on which paper is focused on. Butterfly technique uses additions and multiplications of operands to get the 
required output. Floating point (FP) is used as operands due to their flexibility. As the computations involving FP has less speed, we have used binary 
signed digit (BSD). BSD will take the less time for addition and subtraction. Three bit BSD adder and FP adder together will make a fused dot product 
add (FDPA) unit. In FDPA, unit addition and subtraction will be one group and multiplication will be one group and then their respective results will 
be fused. Modified booth encoding and decoding algorithm are used here to make the complex multiplication with ease.
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INTRODUCTION

Architecture contributes as FFT coprocessors. As the name suggest 
coprocessors, which mean they can be used along with the main 
coprocessors to reduce the workload on main processors. However, 
the main problem is that FP has its slowness in operations to reduce 
this drawback redundant number system (RNS) can be used. The main 
features of RNS are less delay, area, power consumption [2]. RNS can be 
defined as a system a number system, defined by radix r and digit set 
[α,β], is redundant if and only if β-α+1> r. This RNS used for reducing the 
delay by reducing the operations on carry propagation. For consecutive 
addition and subtraction, we can make use of RNS. In this paper, we have 
used RNS in the range of {−1,0,1}. Hence, it is names as binary signed 
digit (BSD) representation. Carry propagation is known as the main 
decelerator in digital arithmetic operations. Fused dot product adds 
(FDPA) unit consists of FP three-operand BSD adder and FP BSD constant 
multiplier.

The proposed methodology for these techniques used in this paper is 
as follows:
1.	 To convert significands of FP into BSD and carry limited adder is to 

be designed
2.	 FP constant multipliers for operands with BSD significands
3.	 FP three-operand adders for operands with BSD significands and 

Design FDPA for operands with BSD significands.

METHODS

Considering the signal having N samples, it has to find the FFT of signal. 
Then, according to Swartzerlandera and Saleh [1], N samples can be 
divided into even and odd, i.e., into N/2-input signals. This methodology 
is called as butterfly unit. From Fig.  1 A and B are the two samples 
where A complex number consists of one real and one imaginary 
component such that A=Are+Aim and B=Bre+Bim and in calculating FFT 
the important is twiddled factor, which is defined as Wnk

N , where W 
can be represented as complex number W=Wre+Wim. According to Fig. 1 
B is multiplied with W, on multiplying with B with W,

BWre=Bre*Wre−Bim*Wim� (1)

BWim=Bre*Wim+Bim*Wre� (2)

From equation 1 and 2, it shows that for getting BW as a output, dot 
product and successive addition and subtraction. And then, this product 
is going to get added or subtracted with A. For this operation, FP is used 
and to reduce its slowness BSD conversion is used. The every significand 
of FP point is converted into BSD having a range from {−1,0,1}. 
Extending the concept of FP addition and multiplication the one fusion 
is created of the outputs at each stage. The FDPA units provide two 
outputs (dubbed − and +). The output computes BreWim+BimWre−Aim and 
BreWim+BimWre+Aim while the + output is the result of an FDPA consists 
of two main components are:
A.	 Redundant FP multiplier
B.	 Three operand FP BSD.

Redundant FP multiplier
In this circuit, parallel multipliers are used. Since this parallel multipliers 
are used for fast multiplication, parallel multipliers can be implemented 
using Modified Booth multipliers [10] Modified Booth multiplier 
encodes multipliers and then given as an input to multiplicand and then 
given to Wallace tree and carry look ahead adder. The two major steps 
of parallel multipliers are:

Partial product generation (PPG)
In the Modified Booth encoder, the multiplier is encoded using 
algorithm, considering the binary stream of bits, as the 1 encounters 
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Fast Fourier transform (FFT) is used to convert time domain 
signal into S-plane with high speed and efficiency. FFT 
using butterfly method is one of the easiest methods contains 
successive additions, subtraction, and multiplication for 
complex numbers. Hence, this method can be used as a tool to 
compute arithmetic in efficient way and in less time. According to 
Cooley and Tukey [4], while calculating the FFT using butterfly 
method, we can distribute the samples in even and odd. The main 
advantage of using FFT is that it have symmetry and periodicity
 property, which is very important aspect from 
computer arithmetic. This architecture makes use of floating 
point (FP) numbers as FP has dynamic range and also the 
memory space which they use is comparatively low. According
 to IEEE standard 754-2008 [3], it is used for FP arithmetic 
operations. The FP along with FFT butterfly.
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replacing it with −1 and after that if 0 comes in way replacing it with +1 
And then making the pairs of two bits of multipliers and replacing bits.

Modified Booth algorithm uses n/2 clocks instead of n clocks for 
n bit multiplication which reduces the speed of operation. The 
Modified Booth encoding (MBE) is actually a radix-4 multiplication 
i.e.,  conversion from [0,3] to [−2,2]. The significands Bre, Bim, Wre, Wim 
are in BSD format. Multiplication of significands has three steps namely 
PPG, partial product reduction (PPR) and final addition [2]. Out of which 
PPG and PPR are important and time consuming, however the proposed 
multiplier keeps the product in redundant format so no need of carry 
propagating adder. The PPG, in a 2’s complement representation of 
the multiplicand and multiplier, consists of arrays of AND operation 
such that each bit of the multiplier is ANDed to the whole bits of the 
multiplicand. This is not the case if the operands are represented in 
redundant format and/or Booth encoding. For example, if the multiplier 
is represented in the MBE, the PPG looks like the circuitry shown in 
Fig. 3. PPG of a redundant multiplier is even more complicated, since 
the cardinality of the multiplier’s digit-set is more than the radix. 
Generating the multiples of the multiplicand is easy (shift and negation) 
for ±2x and ±1x; however, ±3x and ±5x (if exists) involve an addition. 
The PPG step of the proposed multiplier is completely different from 
that of the conventional one because of the representation of the input 
operands (B, W, Bre, Wre). The multiplications over significands can be 
computed via a series of shifters and adders. Most probably the barrel 
shifter is used for shifting. With the intention of reducing the number 
of adders [2], the significand of W is stored in MBE [7] in which every 
binary position takes a value of [−1,0,1] where there is at least one 0 in 
two adjacent positions. Therefore, n/2 add/sub is sufficient to compute 
an n-by-n multiplication.

The BSD representation of multiplicand B, the value of –B (–2B) is 
generated through a simple NOT over all bits of B (2B). 2B is generated 

Fig. 1: Fast Fourier transform butterfly unit

Fig. 3: Partial product generation in Modified Booth encoding

via a 1-bit left shift over B. Note that each partial product consists of (n+1) 
digits (i.e., binary positions), each of which has a negabit and a posibit.
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Fig. 2: Modified Booth algorithm

Fig. 4: Circuitry for partial product generation according to 
Table 1 

Table 1: Generation of ith partial product
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PPR
The important task for the PPR contains carry-limited addition. In 
partial product, the addition of intermediate stage is done using carry 
look ahead adder in which at last carry is added into sum making 
less area to occupy. There are two approaches to reduce the partial 
products; (1) Reduction by rows and (2) reduction by columns. It 
takes three steps to reduce the eight operands while each step has 
the latency of one adder. The total number of adders used in this 
reduction method is seven. Reduction of p operands can be divided 
into two parts, each of which reduces p/2 operands and then add the 
outputs together [5].

FP adder
The addition of FP is carried using the following algorithm:
a.	 Exponent difference determines exponent difference Δ and the 

smaller exponent
b.	 Alignment shift: Shift right (Δ positions) the significands of the 

number having a smaller exponent. The largest exponent is the 
result’s exponent

c.	 Addition/subtraction over significands: Determine and perform the 
actual operation; may need to swap the operands

d.	 Normalization shift: Shift right 1 bit, in case of addition overflow. 
Detect the number of leading zeros and shift left, in case of 
subtraction, such that there is a new hidden 1 to the left of the binary 
point

e.	 Rounding: Use extra bits (round, guard, and sticky) to round the 
result. This may lead to postnormalization

f.	 Exponent adjustment: Adjust the exponent to compensate for the 

shifts in (d) and (e). But in this case, the normalization and rounding 
are done using conventional methods for BSD representation.

In the proposed three-operand floating-point adder, a new alignment 
block is implemented and carry-save adders-carry propagate adder are 
replaced by the proposed BSD adders and sign logic is eliminated [4]. 
The exponent comparison and significand alignment of the proposed 
architecture are almost the same as that of the fused three-operand 
adder. The only difference is that the significand alignment block, in 
the proposed design, does not wait for the exponent comparison block 
to finish and part of significand alignment operation is overlapped 
with the exponent comparison [3]. Moreover, the addition part also 
overlaps with the significand alignment and exponent comparison. The 
only blocks that wait for other blocks to finish before they start their 
operations are Normalization, Rounding, and exponent adjustment. 
Therefore, having multiple blocks working partially in parallel makes 
the proposed three-operand floating-point adder faster than previous 
works [1]. Next, a BSD adder adds the aligned third significand 
(58-digit) to SUM (33-digit) generated from the first BSD adder. 
Since the input operands have different number of digits, this adder 
is a 58-digit BSD adder in which some positions consist of the digit 
adder with yiYiyi+1Yi+1 assigned to “0”. The next steps are normalization 

Fig. 7: Register transfer language Schematic Wallace tree

Fig. 5: Proposed floating point adder

Fig. 8: Output of Wallace tree

Fig. 6: Binary signed digit slice adder

and rounding which are done using conventional methods for 
BSD representation [23,24]. Normalization of redundant operands is 
more complicated than that of non-redundant operands. The first
 step to normalize a redundant represented number is to detect and
 eliminate the leading non-zero digits of no significance [24]. In
 other words, there is a need to eliminate non-zero digits whose total 
values  are  zero.  The  next  step  is  to  detect  the  number  of  leading 
zeros  and then shift  the  operand to  the  left  accordingly.  The  leading 
zero  detector  (LZD)  can  be  implemented  using  a  divide-and-conquer 
approach in which, first, a 2-bit LZD is designed and then larger LZD is 
built  using  the  basic  2-bit  LZD.  D  signals  represent  if  any  “1”  is 
detected  and  P  signals  represent  the  position  of  the  detected  “1”  [6]. 
Using the same approach, 4-bit LZD detectors can be used to build an 
8-bit LZD and so on. At the end, the 
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value of P shows the number of leading zeros. This value is passed to the 
barrel shifter to perform left shifts on the operand.

EVALUATION

Xilinx tool is used for the simulation of the design. Wallace tree is used 
to implement the Modified Booth encoder. The Schematic of Wallace 
tree in register transfer language is given as:

CONCLUSION

We have used FP based butterfly architecture, in which we had firstly 
converted the FP into BSD to make addition quite simpler and time 
saving. Smaller area is required to design a Modified Booth algorithm. 
It will be more beneficial to use butterfly architecture so as reduce 
the area used by complete circuitry will be less and also the speed 
will be higher. Furthermore, dual-path FP architecture can be used 
to implement addition and subtraction of BSD. The critical path of 
the three-operand adder consists of: Two 8-bit carry-propagating 
subtractors (0.25 ns each), a MUX (0.07ns), a barrel shifter (0.29 ns), 
the final BSD adder (0.16 ns), normalization and rounding (0.75 ns), 
registers (0.22 ns).
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