
Special Issue (April)
Online - 2455-3891

Print - 0974-2441

Advances in Smart Computing and Bioinformatics

EFFICIENT FLOATING POINT FAST FOURIER TRANSFORM BUTTERFLY ARCHITECTURE
USING BINARY SIGNED DIGIT MULTIPLIER AND ADDERS

SHIVANI ACHARYA, AUGUSTA SOPHY BEULET P

ABSTRACT

Fast Fourier transform (FFT) is one of the most important tools in digital signal processing as well as communication system because transforming
time domain to S-plane is very convenient using FFT. As FFT uses various techniques to convert a signal from time domain to S-domain and inverse,
out of which butterfly technique is the one on which paper is focused on. Butterfly technique uses additions and multiplications of operands to get the
required output. Floating point (FP) is used as operands due to their flexibility. As the computations involving FP has less speed, we have used binary
signed digit (BSD). BSD will take the less time for addition and subtraction. Three bit BSD adder and FP adder together will make a fused dot product
add (FDPA) unit. In FDPA, unit addition and subtraction will be one group and multiplication will be one group and then their respective results will
be fused. Modified booth encoding and decoding algorithm are used here to make the complex multiplication with ease.

Keywords: Binary signed digit, Floating point, Fused dot product add, Fast Fourier transform, Redundant number system.

INTRODUCTION

Architecture contributes as FFT coprocessors. As the name suggest
coprocessors, which mean they can be used along with the main
coprocessors to reduce the workload on main processors. However,
the main problem is that FP has its slowness in operations to reduce
this drawback redundant number system (RNS) can be used. The main
features of RNS are less delay, area, power consumption [2]. RNS can be
defined as a system a number system, defined by radix r and digit set
[α,β], is redundant if and only if β-α+1> r. This RNS used for reducing the
delay by reducing the operations on carry propagation. For consecutive
addition and subtraction, we can make use of RNS. In this paper, we have
used RNS in the range of {−1,0,1}. Hence, it is names as binary signed
digit (BSD) representation. Carry propagation is known as the main
decelerator in digital arithmetic operations. Fused dot product adds
(FDPA) unit consists of FP three-operand BSD adder and FP BSD constant
multiplier.

The proposed methodology for these techniques used in this paper is
as follows:
1.	 To convert significands of FP into BSD and carry limited adder is to

be designed
2.	 FP constant multipliers for operands with BSD significands
3.	 FP three-operand adders for operands with BSD significands and

Design FDPA for operands with BSD significands.

METHODS

Considering the signal having N samples, it has to find the FFT of signal.
Then, according to Swartzerlandera and Saleh [1], N samples can be
divided into even and odd, i.e., into N/2-input signals. This methodology
is called as butterfly unit. From Fig. 1 A and B are the two samples
where A complex number consists of one real and one imaginary
component such that A=Are+Aim and B=Bre+Bim and in calculating FFT
the important is twiddled factor, which is defined as Wnk

N , where W
can be represented as complex number W=Wre+Wim. According to Fig. 1
B is multiplied with W, on multiplying with B with W,

BWre=Bre*Wre−Bim*Wim� (1)

BWim=Bre*Wim+Bim*Wre� (2)

From equation 1 and 2, it shows that for getting BW as a output, dot
product and successive addition and subtraction. And then, this product
is going to get added or subtracted with A. For this operation, FP is used
and to reduce its slowness BSD conversion is used. The every significand
of FP point is converted into BSD having a range from {−1,0,1}.
Extending the concept of FP addition and multiplication the one fusion
is created of the outputs at each stage. The FDPA units provide two
outputs (dubbed − and +). The output computes BreWim+BimWre−Aim and
BreWim+BimWre+Aim while the + output is the result of an FDPA consists
of two main components are:
A.	 Redundant FP multiplier
B.	 Three operand FP BSD.

Redundant FP multiplier
In this circuit, parallel multipliers are used. Since this parallel multipliers
are used for fast multiplication, parallel multipliers can be implemented
using Modified Booth multipliers [10] Modified Booth multiplier
encodes multipliers and then given as an input to multiplicand and then
given to Wallace tree and carry look ahead adder. The two major steps
of parallel multipliers are:

Partial product generation (PPG)
In the Modified Booth encoder, the multiplier is encoded using
algorithm, considering the binary stream of bits, as the 1 encounters

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4. 0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10s1.19568

Full Proceeding Paper

Department of CSE, School of Electronics, VIT, Chennai, Tamil Nadu, India. Email:asha.s@vit.ac.in
Received: 23 January 2017, Revised and Accepted: 03 March 2017

Fast Fourier transform (FFT) is used to convert time domain
signal into S-plane with high speed and efficiency. FFT
using butterfly method is one of the easiest methods contains
successive additions, subtraction, and multiplication for
complex numbers. Hence, this method can be used as a tool to
compute arithmetic in efficient way and in less time. According to
Cooley and Tukey [4], while calculating the FFT using butterfly
method, we can distribute the samples in even and odd. The main
advantage of using FFT is that it have symmetry and periodicity
 property, which is very important aspect from
computer arithmetic. This architecture makes use of floating
point (FP) numbers as FP has dynamic range and also the
memory space which they use is comparatively low. According
 to IEEE standard 754-2008 [3], it is used for FP arithmetic
operations. The FP along with FFT butterfly.

74

Special Issue (April)
	 Acharya and Beulet	

replacing it with −1 and after that if 0 comes in way replacing it with +1
And then making the pairs of two bits of multipliers and replacing bits.

Modified Booth algorithm uses n/2 clocks instead of n clocks for
n bit multiplication which reduces the speed of operation. The
Modified Booth encoding (MBE) is actually a radix-4 multiplication
i.e., conversion from [0,3] to [−2,2]. The significands Bre, Bim, Wre, Wim
are in BSD format. Multiplication of significands has three steps namely
PPG, partial product reduction (PPR) and final addition [2]. Out of which
PPG and PPR are important and time consuming, however the proposed
multiplier keeps the product in redundant format so no need of carry
propagating adder. The PPG, in a 2’s complement representation of
the multiplicand and multiplier, consists of arrays of AND operation
such that each bit of the multiplier is ANDed to the whole bits of the
multiplicand. This is not the case if the operands are represented in
redundant format and/or Booth encoding. For example, if the multiplier
is represented in the MBE, the PPG looks like the circuitry shown in
Fig. 3. PPG of a redundant multiplier is even more complicated, since
the cardinality of the multiplier’s digit-set is more than the radix.
Generating the multiples of the multiplicand is easy (shift and negation)
for ±2x and ±1x; however, ±3x and ±5x (if exists) involve an addition.
The PPG step of the proposed multiplier is completely different from
that of the conventional one because of the representation of the input
operands (B, W, Bre, Wre). The multiplications over significands can be
computed via a series of shifters and adders. Most probably the barrel
shifter is used for shifting. With the intention of reducing the number
of adders [2], the significand of W is stored in MBE [7] in which every
binary position takes a value of [−1,0,1] where there is at least one 0 in
two adjacent positions. Therefore, n/2 add/sub is sufficient to compute
an n-by-n multiplication.

The BSD representation of multiplicand B, the value of –B (–2B) is
generated through a simple NOT over all bits of B (2B). 2B is generated

Fig. 1: Fast Fourier transform butterfly unit

Fig. 3: Partial product generation in Modified Booth encoding

via a 1-bit left shift over B. Note that each partial product consists of (n+1)
digits (i.e., binary positions), each of which has a negabit and a posibit.

W Wi+1
-

i-1
+ W Wi

-
i
+ W W W Wi+1

-
i-1
+

i
-

i
+ PPi

00 00 0 0
00 01 1 B
00 11 −1 −B
01 00 2 2*B
11 00 −2 −2*B

Fig. 2: Modified Booth algorithm

Fig. 4: Circuitry for partial product generation according to
Table 1

Table 1: Generation of ith partial product

75

Special Issue (April)
	 Acharya and Beulet	

PPR
The important task for the PPR contains carry-limited addition. In
partial product, the addition of intermediate stage is done using carry
look ahead adder in which at last carry is added into sum making
less area to occupy. There are two approaches to reduce the partial
products; (1) Reduction by rows and (2) reduction by columns. It
takes three steps to reduce the eight operands while each step has
the latency of one adder. The total number of adders used in this
reduction method is seven. Reduction of p operands can be divided
into two parts, each of which reduces p/2 operands and then add the
outputs together [5].

FP adder
The addition of FP is carried using the following algorithm:
a.	 Exponent difference determines exponent difference Δ and the

smaller exponent
b.	 Alignment shift: Shift right (Δ positions) the significands of the

number having a smaller exponent. The largest exponent is the
result’s exponent

c.	 Addition/subtraction over significands: Determine and perform the
actual operation; may need to swap the operands

d.	 Normalization shift: Shift right 1 bit, in case of addition overflow.
Detect the number of leading zeros and shift left, in case of
subtraction, such that there is a new hidden 1 to the left of the binary
point

e.	 Rounding: Use extra bits (round, guard, and sticky) to round the
result. This may lead to postnormalization

f.	 Exponent adjustment: Adjust the exponent to compensate for the

shifts in (d) and (e). But in this case, the normalization and rounding
are done using conventional methods for BSD representation.

In the proposed three-operand floating-point adder, a new alignment
block is implemented and carry-save adders-carry propagate adder are
replaced by the proposed BSD adders and sign logic is eliminated [4].
The exponent comparison and significand alignment of the proposed
architecture are almost the same as that of the fused three-operand
adder. The only difference is that the significand alignment block, in
the proposed design, does not wait for the exponent comparison block
to finish and part of significand alignment operation is overlapped
with the exponent comparison [3]. Moreover, the addition part also
overlaps with the significand alignment and exponent comparison. The
only blocks that wait for other blocks to finish before they start their
operations are Normalization, Rounding, and exponent adjustment.
Therefore, having multiple blocks working partially in parallel makes
the proposed three-operand floating-point adder faster than previous
works [1]. Next, a BSD adder adds the aligned third significand
(58-digit) to SUM (33-digit) generated from the first BSD adder.
Since the input operands have different number of digits, this adder
is a 58-digit BSD adder in which some positions consist of the digit
adder with yiYiyi+1Yi+1 assigned to “0”. The next steps are normalization

Fig. 7: Register transfer language Schematic Wallace tree

Fig. 5: Proposed floating point adder

Fig. 8: Output of Wallace tree

Fig. 6: Binary signed digit slice adder

and rounding which are done using conventional methods for
BSD representation [23,24]. Normalization of redundant operands is
more complicated than that of non-redundant operands. The first
 step to normalize a redundant represented number is to detect and
 eliminate the leading non-zero digits of no significance [24]. In
 other words, there is a need to eliminate non-zero digits whose total
values are zero. The next step is to detect the number of leading
zeros and then shift the operand to the left accordingly. The leading
zero detector (LZD) can be implemented using a divide-and-conquer
approach in which, first, a 2-bit LZD is designed and then larger LZD is
built using the basic 2-bit LZD. D signals represent if any “1” is
detected and P signals represent the position of the detected “1” [6].
Using the same approach, 4-bit LZD detectors can be used to build an
8-bit LZD and so on. At the end, the

76

Special Issue (April)
	 Acharya and Beulet	

value of P shows the number of leading zeros. This value is passed to the
barrel shifter to perform left shifts on the operand.

EVALUATION

Xilinx tool is used for the simulation of the design. Wallace tree is used
to implement the Modified Booth encoder. The Schematic of Wallace
tree in register transfer language is given as:

CONCLUSION

We have used FP based butterfly architecture, in which we had firstly
converted the FP into BSD to make addition quite simpler and time
saving. Smaller area is required to design a Modified Booth algorithm.
It will be more beneficial to use butterfly architecture so as reduce
the area used by complete circuitry will be less and also the speed
will be higher. Furthermore, dual-path FP architecture can be used
to implement addition and subtraction of BSD. The critical path of
the three-operand adder consists of: Two 8-bit carry-propagating
subtractors (0.25 ns each), a MUX (0.07ns), a barrel shifter (0.29 ns),
the final BSD adder (0.16 ns), normalization and rounding (0.75 ns),
registers (0.22 ns).

REFERENCES

1.	 Swartzerlander EE Jr, Saleh HH. FFT implementation with fused
floating point operations. IEEE Trans Comput 2012;61(2):284-8.

2.	 Sohn J, Swatzerlander EE Jr. Improved architectures for a floating
point fused dot product unit. In: Proceeding IEEE, 21st Symposium on
Computer Arithmetic. April; 2013. p. 41-8.

3.	 IEEE Standard for Floating Point Arithmatic, IEEE Standard, 754,
2008, August; 2008. p. 1-58.

4.	 Cooley JW, Tukey JW. An algorithm for machine calculation of
complex Fourier Series. Math Comput 1965;19(90):297301.

5.	 Baba SK, Rajaramesh D. Design and implementation of advanced
modified booth encoding multiplier. Int J Eng Sci Invent
2013;2(8):60-8. Available from: http://www.ijesi.org.

6.	 Schneider K, Willenbucher A. A New Algorithm for Carry Free Addition
of BinarySigned-Digit Numbers, IEEE 22nd International Symposium
on Field-Programmable Custom Computing Machines; 2014.

7.	 Min JH, Kim SW, Swatzerlander EE Jr. A floating point fused FFT
butterfly arithmetic unit with mergerd multipliers. In: Proceeding
45th Asilomar Conference on Signals, Systems, and Computers.
November; 2011. p. 520-4.

8.	 Tenca AF. Multi-operand floating point addition. In: Proceeding
19th Computer Arithmetic, June; 2009. p. 161-8.

9.	 Palnitkar S. Verilog HDL: A Guide to Digital Design and Synthesis, IEEE
1364-2001 Compliant. 2nd ed. Upper Saddle River, NJ: Pearson; 2003.

10.	 Prokis JG, Manolkis DG. Digital Signal Processing. 4th ed. Englewood
Cliffs, NJ: Pearson Prentice Hall; 2007.

11.	 Kuang SR, Wang JP, Guo CY. Modified booth multipliers with a regular
partial product array. IEEE Trans Circuits Syst II 2009;56(5):404-8.

12.	 Wang LR, Jou SJ, Lee CL. A Well-structured modified booth multiplier
design. IEEE International Symposium on VLSI Design, Automation
and Test. VLSI-DAT; 2008 Apr 23-25; Hsinchu. IEEE. p. 85-8.

