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Dimensionality reduction techniques are used to reduce the complexity for analysis of high-dimensional data sets. The raw input data set may have 
large dimensions, and it might consume time and lead to wrong predictions if unnecessary data attributes are been considered for analysis. Hence, 
using dimensionality reduction techniques, one can reduce the dimensions of input data toward accurate prediction with less cost. In this paper, the 
different machine learning approaches used for dimensionality reductions such as principal component analysis (PCA), singular value decomposition, 
linear discriminant analysis, Kernel PCA, and artificial neural network have been studied.
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INTRODUCTION

Analyzing and processing of high-dimensional data are a tedious task and 
consumes large amount of time; these are among the major challenges 
in big data [1]. The higher dimensionality of the data might have a 
negative impact while applying for many of the clustering algorithms. 
Hence to address the curse of dimensionality of the data, we introduce 
dimensionality reduction techniques. Thus, dimensionality reduction 
techniques is been done as a data pre-processing step before applying any 
of these algorithms in such a way that it will not compromise the accuracy 
of the results. Feature extraction and feature selection are two types 
of dimensionality reduction methods. Essential features are extracted 
from the original input dataset in case of feature extraction method. The 
feature extraction method reduces the dimensionality by transforming 
the original dataset features into a new reduced set of features. While 
in feature selection method a subset of the already existing features are 
been selected [2]. Supervised approach and unsupervised approach are 
the two approaches available for dimensionality reduction.

Dimensionality reduction is the process by which we can convert large 
dimensional dataset into data with lesser dimensions, but it makes 
sure that it conveys the same information concisely. It can be used for 
data compression, reduce storage space, reduce the time required for 
analyzing and performing computations and helps in better visualization 
of the data. We can use either supervised approaches or unsupervised 
approaches for dimensionality reduction techniques. Linear discriminant 
analysis (LDA), neural network is some of the supervised dimensionality 
reduction techniques. Principal component analysis (PCA), singular 
value decomposition (SVD), and kernel PCA (KPCA) are few of the 
unsupervised approaches of dimensionality reduction.

Microarray data analysis, face recognition, protein classification, 
text mining, image retrieval are some of the real-time applications of 
dimensionality reduction techniques.

LITERATURE SURVEY

Bae et al. [3] in their paper used the PCA method to analyze the age-
related factors of wrist pulse from various analysis parameters. The 
wrist pulse signals and respiratory signals from 40 people, 20 each 
in the age group of 20s and 40s who do not have any cardiovascular 

disorders were included for their study. The PCA was performed 
on twenty different analysis parameters that can reflect pulse 
characteristics. From among these parameters, the parameters which 
were expected to contain information regarding the age-related factors 
have to be examined. After performing PCA, the newly transformed 
analysis parameters with lower dimensions were used to obtain the 
differences in the age group of these people by evaluating the score of 
the principal components (PCs). The MATLAB R2015b software was 
made use of to do the same. The experiment showed that there was 
different dispersion among the two age groups which means that there 
exist age-related parameters in wrist pulse signals. Once the statistical 
difference between these two age groups were been analyzed the score 
of first PC of age group 20 were much lower than that of age group 40. 
However, the other higher PCs did not show much statistical difference 
between the two age groups once when they were tested. Hence, they 
came to the conclusion that the first PC could be considered as an age-
related factor of the wrist pulse and it can be used to classify the typical 
pulse with age.

Seng et al. [4] proposed a paper in which the rule-based and machine 
learning strategies are been used together to solve the problem of 
audio-visual emotion recognition. The emotions of people are been 
recognized by giving their audio and visual data as the input. ORL, YALE 
(standard face recognition databases), Cohn-Kanade dataset (visual 
emotion recognition dataset), eNTERFACE’05, RML (audio-visual 
emotion database) are the different databases that has been used for 
the experiments in this paper. The high dimensional data are been 
transformed to low-dimensional data, and the classes are been separated 
with bidirectional principle component analysis and least square LDA 
for the design of the visual path and the transformed features are then 
passed through an optimized kernel laplacian radial basis function 
neural classifier. Moreover, for the design of audio path the rhythmic and 
spectral features are combined, and these transformed audio features 
are then channeled through an audio feature level fusion module. The 
outputs from both the audio and visual path are been combined using 
the score-level fusion method in the audio-visual fusion module. As a 
final step the emotions recognized from above audio path, visual path 
steps are been analyzed along with the one obtained after the fusion of 
those outputs and the score is been analyzed, and the emotion that has 
the maximum score will be considered as the final output.
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Fuadi et al. [5] the objective of this paper is to analyze the document 
clustering quality when SVD technique is used for the dimensionality 
reduction. Here to reduce the dimension of the document, the SVD 
method is applied to the term-document matrix and thus the matrix 
is factorized into three matrices and from these matrices the least 
singular values are set to zero and thus the rows formed from these 
singular values can be eliminated and thus the dimensionality of the 
matrices can be reduced and in such a way only the most relevant values 
are been selected and the other terms are neglected. Then using the 
k-means algorithm clusters are been formed out of the data, and then 
the quality of these data clusters are been checked to check whether 
there is drastic change in the quality when the dimensionality is been 
reduced. The quality check shows that there is not much change in the 
quality of data clusters after dimensionality reduction when compared 
to the clusters when all the dimensions are been considered.

Ibrahim et al. [6] in their paper used an intelligent multi-objective 
classifier and tried to classify and diagnose breast cancer disease using 
multilayer perceptron NN with differential evolution technique. In 
multilayer perceptron, a set of inputs gets mapped to a set of output. It 
is an artificial feedforward NN. Here the real DE algorithm is changed 
in such a way that it can be applied for multi-objective optimization 
problem. Multi-objective optimization algorithm is used to optimize 
the conflicting objectives simultaneously based on some constraints. 
In this study, breast cancer, dataset was used and they tried to classify 
the data or the tumor as belonging to malignant or benign. There were 
nine attributes for the dataset and benign and malignant was the 
two output classes. The intelligent multi-objective classifier used the 
multi-objective evolutionary algorithm, and it was based on the multi-
objective differential evolution algorithm and the artificial NN (ANN) on 
the multilayer perceptron NN. The NNs hidden nodes in hidden layers 
were been optimized here using multi-objective differential evolution 
algorithm. Here, the method depends on two objective functions, and 
the goal was to minimize these functions. One function was to improve 
accuracy or the performance by reducing the error rate in the network 
for the training data, and the other was to reduce the number of 
hidden nodes in the network and thus reduce its complexity. From the 
experiment, a good classification for the training and testing dataset for 
the diagnosis of breast cancer was obtained, the classifier was able to 
classify the benign and malignant tumors of breast cancer well, and it 
also produced a simple network structure with the lowest complexity.

EXISTING TECHNIQUES

In dimensionality reduction techniques, there are supervised and 
unsupervised algorithms. In supervised method, the class labels are 
retained. The class to which each attribute belongs are all retained in 
the training dataset and based on the training dataset the new data are 
classified. In unsupervised method the class labels are unknown. It tries 
to find a the structure that can explain the original data [7].

PCA
PCA is one of the prominent strategies among unsupervised feature 
extraction technique. It is a statistical procedure. The variables in the 
data go through orthogonal transformation and are transformed into 
a set of uncorrelated variables that captures most of the variance in the 
data and are called as PCs [8]. The PCs may be equal or less in number to 
the original set of attributes. Few orthogonal linear combinations of the 
existing attribute having the largest variance are been found out and using 
it the number of attributes of the data are reduced. These orthogonal linear 
combinations are called as the PCs. Most of the variance will be explained 
by first PCs [9] hence even though we remove the rest of the PCs there will 
not be much reduction in information in most of the datasets [10] thus 
dimensionality reduction of the attributes becomes easy.

SVD
SVD is a matrix factorization method for low-rank approximation [5]. 
A matrix of rank R is reduced to a matrix of rank K. The R matrix considered 
as a list of R unique vectors, and it can be approximated as a linear 
combination of K unique vectors. Each row can be written as sum of 

vectors like,

Ri=ciSV1+biSV2 +…. (1)

Where, ci is scale factor and SV1, SV2 are singular vectors with highest 
and second highest singular values. Here, a matrix M is been factorized 
into three matrices M=UDVT here the columns of matrices U and V are 
orthonormal, and matrix D is diagonal. If the matrix to be factorized is 
too large and also the matrices U, D, and V formed are also large such 
that it is not convenient to store them, then the dimensionality of these 
three matrices can be reduced by setting the least singular values to 
zero [11]. The rows that are formed from these singular values can 
be eliminated from U and V once these least singular values are set to 
zero. Thus, SVD is used for elimination of less important features and 
by that way to get the desired number of dimensions.

Steps to perform SVD:

Find the transpose of a matrix say, A

Calculate X= ATA

Find Eigenvalues for the above matrix, i.e., evaluate ATA-λI

Calculate singular values s1, s2 etc. s=√λ

Arrange the singular values in increasing order.

The singular values are placed in descending order, and a diagonal 
matrix S is constructed. S−1 is constructed by computing the inverse of 
this diagonal matrix S.

Substitute value of Eigenvalues in the equation,

(ATA−λI)X1=0 (2)

And compute the values of Eigenvectors,

Substitute the Eigenvectors for V,

V=[x1 x2]

Find transpose of V to form VT

Calculate U, U=AVS−1

KPCA
KPCA uses the kernel method strategies [2,12]. With a nonlinear 
transform x→Φ(x) the input data x is changed from its original input 
space to a higher dimensional feature space. Here Φ is a nonlinear 
function, and this is to make the nonlinear data become linearly 
separable. Then a kernel matrix K is formed using the inner products of 
features of the newly formed transformed data. Then PCA is performed 

on the centralized K, i.e., 
K

L

kx

=
∑∅ =
1

0( )  which is an estimate of the 

covariance matrix of new feature vectors in the new higher dimensional 
feature space. PCA does not efficiently represent larger and nonlinear 
representation of input data. With KPCA method the representation of 
such kind of input data becomes possible.

LDA
LDA like PCA explains the data as linear combination of variables. It 
is a supervised dimensionality reduction technique [10,13]. It creates 
linear combination of independent features and thus produces larger 
mean difference between the classes described. It analyzes the within-
class scatter matrix and between-class scatter matrix and tries to 
maximize the value of between-class scatter matrix and minimize the 
within-class scatter matrix value. By this technique, without much loss 
of information, the dimensionality of feature vectors is been reduced. 
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It computes the within-class scatter matrix and between-class scatter 
matrix for all class samples.

1. Within class scatter matrix,

 
= =

= − −∑∑
jNc

j j
j ji i

j 1 i 1

T(x xSw )(  )  (3)

Where c is the number of classes, xi
j  is the ith sample of class j, μj is the 

mean of class j, and Nj the number of samples in class j.

2. Between class scatter matrix,

=

= − −∑
c

T
j j

j 1

( )(  )Sb      (4)

μ is the mean of all classes. This method tries to follow the linear 
discriminant principle that is to maximize the ratio: (det|Sb|)/(det|Sw|). 
To maximize this ratio the value of between class scatter matrixes of 
projected samples must be maximized and within class scatter matrix 
must be minimized.

ANN
ANN, here essential features of information processing capabilities of 
our nervous system is been analyzed, and accordingly, ANN tries to 
design models for processing the information. In our biological nervous 
system, the different signals from the body are coded and processed, 
and proper response is evoked instantly. So likewise in ANN, it tries 
to imbibe the properties of the nervous system to be able to produce 
proper responses to the signals that it receives. In ANN each unit can be 
connected to any other unit similar to the neurons being interconnected 
in biological networks. The neurons get several input and it performs 
computation depending on the primitive function mentioned on the 
body of the neurons and depending on the threshold value mentioned 
the network decides whether to signal an output or not. Each of the 
input channels will have a weight associated with it, and at the neuron 
all the information that are been passed are integrated, and the primitive 
function f, defined is evaluated. The ANN is thus a collection of such 
networks of primitive function each of which produces an output which 
may be transferred to the next level. The ANN learns by example. The 
network consists of three layers an input layer, hidden layer, and output 
layer [11]. The input layer consists of the raw information that is passed 
on to the network, and this input layer is connected to the hidden layer. 
The activities that are in the hidden layer depend on the input units and 
the weight that is associated with the connection between each of input 
unit and hidden unit. The hidden units are in turn connected to the 
output unit, and its response depends on the activity that is mentioned 
in the hidden unit and the weight defined in the connection between 
input and hidden unit. The weight defined in between the connection of 
input unit and hidden unit can determine when each of the hidden unit 
is to be active, thus by changing that weight, what each of the hidden 
unit has to represent can be determined. With time the ANN train itself 
and thus from the pattern of the input given to train it, the associated 
output can be taken from the memory and given as output and even the 
ANN train itself to give output to inputs that have patterns which are 
not same but similar to the one it is trained for.

EXPERIMENTS AND RESULTS

The PCA method has been studied and implemented. By this method, 
the most significant variables are found from the large set of variables 
in the original dataset. From the higher dimensional dataset, the low-
dimensional set of variables is pulled out in such a way that these variables 
can get as much information as possible. The analysis, processing and 
visualization of data also become easy once the dimensionality has been 
reduced. The original data are been transformed to a new set. We find the 
PCs which is a linear combination of the features of the dataset. The first 

PC gets the maximum variance from among the original dataset [3,11]. 
The second PC is also a linear combination of the attributes of data as 
the first PC, and it gets the remaining variance from the data that has not 
been captured by the first PC. In such a manner the PCs are found out, 
and the components with largest values are been selected since larger 
the value of PC larger the variance in the data that it covers [14]. The 
remaining lower valued components are neglected since they do not 
contribute much to the variance in the original dataset. These selected 
components are then used to compute the new transformed dataset with 
reduced dimensionality.

Performing PCA in R on iris dataset:

This iris dataset contains 150 instances, 50 each of three classes of 
an iris plant. It has five attributes, namely, Sepal.Length, Sepal.Width, 
Petal.Length, Petal.Width, Class/Species. Class/species is a categorical 
attribute has three categories Iris setosa, Iris virginica, Iris versicolour. 
Here, we try to find which all attributes are required to predict the 
class/species of the iris plant and can be used to capture most of the 
information from the original dataset.

Pseudo code of PCA using R:

Step 1:

Calculating mean for all the numerical attributes

mean_var=mean(variable)

Step 2:

Normalize the data

Norm_var=orginal_variable–mean_variable (5)

Step 3:

Create a data frame, the adjusted or normalized dataset

new_variable=data.frame(variable1,variable2,…)

Step 4:

Find transpose of the adjusted data

tran_new=t(new_variable)

Step 5:

Find covariance matrix of this adjusted data

cov_new=cov(new_variable)

Step 6:

Find Eigenvalues from this covariance matrix

eigen_var=eigen(cov_new)

Step 7:

From the above result, its evident that the Sepal.Length and Sepal.
Width has highest eigenvalues hence their corresponding Eigenvectors 
can be considered. These would capture the maximum variance from 
the whole data set.

Find the feature vector, i.e., the Eigenvectors corresponding to first two 
Eigenvalues is been considered as a separate data frame.

feature_vector=data.frame(eigen_var[,1:2])
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Step 8:

Find the transpose of the feature vector

trans_fvector=t(feature_vector)

Step 9:

Find the final dataset

finalset=transp_fvector*trans_new

Step 10:

Find the transpose of final dataset to view the dimension reduced 
transformed data

trans_final=t(final set)

Here in the transformed data, the number of attributes has been 

meanSeL=mean (iris1$Sepal.Length)
//To find the mean of all attributes
meanSeW=mean (iris1$Sepal.Width)
meanPeL=mean (iris1$Petal.Length)
meanPeW=mean (iris1$Petal.Width)
meanSeL
//the mean value of Sepal.Length
[1] 5.843333
meanSeW
//the mean value of Sepal.Width
[1] 3.057333
meanPeL
//the mean value of Petal.Length
[1] 3.758
meanPeW
//the mean value of Petal.Width
[1] 1.199333
//normalize the value of each attribute
normSeL=iris1$Sepal.Length-meanSeL
//normalize the value of Sepal.Length

Table 1: Sample of iris dataset

SL SW PL PW Species
5.1 3.5 1.4 0.2 Setosa
4.9 3 1.4 0.2 Setosa
4.7 3.2 1.3 0.2 Setosa
4.6 3.1 1.5 0.2 Setosa
5 3.6 1.4 0.2 Setosa
SL: Sepal.Length, SW: Sepal.Width, PL: Petal.Length, PW: Petal.Width

normSeW=iris1$Sepal.Width-meanSeW
normPeL=iris1$Petal.Length-meanPeL
normPeW=iris1$Petal.Width-meanPeW
//Refer Table 2 for sample output of normalized values 
adj=data.frame (normSeL, normSeW, normPeL, normPeW)
//Creating a dataframe with the
normalised values
trans_adj=t (adj)
//To find the transpose of the dataframe
created
cov_adj=cov (adj)
//To find the covariance value of the adjusted dataframe
cov_adj
//Refer Table 3 to view the output
eigen_adj=eigen (cov_adj)
//To find the eigen value and vector
eigen_adj$values
//The first row gives the eigenvalues and the rows below display the 
feature vector
4.22824171 0.24267075 0.07820950 0.02383509
//Eigen values
feature_vec=data.frame (eigen_adj$vectors [,1:2])
//Taking the first two vectors formed from the first two eigen values 
and creating a dataframe
feature_vec
//Refer Table 4 to view the feature vector
transp_feature=t (feature_vec)
//To find the transpose of the feature-vector
transp_feature
//Refer Table 5 for output
finaldata=transp_feature%*%trans_adj
//Multiply the transpose of feature vector with the transpose of 
adjusted data frame to get final data
final=t (finaldata)
//To find transpose of the finaldata
> head (final)
//Refer Table 6 to view output

Table 3: Covariance values of the data adjusted data frame

Normalised_
attribute_values

Normalized
SL

Normalized
SW

Normalized
PL

Normalized
PW

Normalized
SL

0.6856935 −0.0424340 1.2743154 0.5162707

Normalized
SW

−0.0424340 0.1899794 −0.3296564 −0.1216394

Normalized
PL

1.2743154 −0.3296564 3.1162779 1.2956094

Normalized
PW

0.5162707 −0.1216394 1.2956094 0.5810063

SL: Sepal.Length, SW: Sepal.Width, PL: Petal.Length, PW: Petal.Width

Table 2: Sample of normalized values of attributes in iris dataset

Attribute_names 1 2 3 4 5 6
SL −0.7433333 −0.9433333 −1.1433333 1.2433333 −0.8433333 −0.4433333
SW 0.44266667 −0.05733333 0.14266667 0.04266667 0.54266667 0.84266667
PL −2.358 −2.358 −2.458 −2.258 −2.358 −2.058
PW −0.9993333 −0.9993333 −0.9993333 0.9993333 −0.9993333 −0.7993333
SL: Sepal.Length, SW: Sepal.Width, PL: Petal.Length, PW: Petal.Width
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reduced to two. Hence, using these two attribute values itself major 

information of the original dataset can be captured and can be used to 
predict the class of iris if required.

RESULTS

In this Table 1, it provides a sample of the data after the values are 
normalized. After normalization, the mean of the attribute becomes 
equal to zero.

Table 3 gives the covariance values of attributes to each other from the 
normalized dataset.

Eigenvector formed from the PCs is been treated as a new feature 
vector. X1, X2 gives the Eigenvector values (Tables 4 and 5).

The final data are the product of the transpose of newly formed feature 
vector and the transpose of the row adjusted data (normalized dataset) 
(Table 6).

PCA on arrhythmia dataset
Arrhythmia dataset contains information about cardiac arrhythmia 
disease. There are 452 instances and 279 attributes in this dataset, 
the last column is the class variable. This data can be classified into 
one of the 16 groups. Class 1 refers to normal ECG, Class 2-15 refers 
to different classes of arrhythmia and Class 16 refers to the rest of 
unclassified ones. Here the PCA function in R is applied to arrhythmia 
dataset.

Code:

MyData <- read.csv (file=”D:/datasets/arrythmia.csv”, header=TRUE, 
sep=”,”) #Read the arrhythmia dataset
arrythmia=data. frame (MyData) #Creating a data frame
Summary (MyData) #Display the summary of the dataset
Library (DMwR)
Arrhythmia [arrhythmia == ‘?’] <-NA #replace the missing values 
with ‘NA’

library (rpart)
# Using report function trying to impute for missing values
anova_mod <- rpart (J ~ . - V280, data=arrythmia[!is.
na (arrythmia$J), ], method=”anova”, na.action=na.omit)
J_pred <- predict (anova_mod, arrythmia [is.na (arrythmia$J),])
library (Hmisc)
arrythmia$J<-impute (arrythmia$J, J_pred) #Replace the missing 
values of J attribute column in arrhythmia with the imputed values
anova_mod <- rpart (P ~ . - V280, data=arrythmia[!is.
na (arrythmia$P), ], method=”anova”, na.action=na.omit)
p_pred <- predict (anova_mod, arrhythmia [is.na (arrythmia$P),])
arrythmia$P<-impute (arrythmia$P, p_pred) #Replace the missing 
values of P attribute column in arrhythmia with the imputed values
anovat_mod <- rpart (T~ . - V280, data=arrythmia[!is.
na (arrythmia$T), ], method=”anova”, na.action=na.omit)
t_pred <- predict (anovat_mod, arrythmia[is.na (arrythmia$T), ])
arrythmia$T<-impute (arrythmia$T, t_pred) #Replace the missing 
values of T attribute column in arrhythmia with the imputed values
anovaqr_mod <- rpart (QRST ~ . - V280, data=arrythmia[!is.
na (arrythmia$QRST), ], method=”anova”, na.action=na.omit)
qrst_pred <- predict (anovaqr_mod, arrythmia[is.
na (arrythmia$QRST), ])
arrythmia$QRST<-impute (arrythmia$QRST, qrst_pred) #Replace 
the missing values of QRST attribute column in arrhythmia with the 
imputed values
anovaHR_mod <- rpart (HeartRate ~ . - V280, data=arrythmia[!is.
na (arrythmia$HeartRate), ], method=”anova”, na.action=na.omit)
HR_pred <- predict (anovaHR_mod, arrythmia[is.
na (arrythmia$HeartRate), ])
arrythmia$HeartRate<-impute (arrythmia$HeartRate, HR_pred) 
#Replace the missing values of HeartRate attribute column in 
arrhythmia with the imputed values
scale.dat=scale (arrythmia) #scale the values in the dataset
my_data <- subset (arrythmia, select = -c (V280)) #remove the class 
attribute from the dataset
pca.train<-my_data[1:nrow (arrythmia),]
prin_comp <- prcomp (pca.train, scale. = F) #Find the principal 
components
summary (prin_comp)
std_dev <- prin_comp$sdev #Find standard deviation of the principal 
components
pr_var <- std_dev^2 #Calculate the variance
prop_varex <- pr_var/sum (pr_var) #Find the proportion of variance 
explained
prop_varex[1:10] #here first component explains 27% variance 
second 10% and so on
#Cumulative Plot for the proportion of variance explained. From this 
we can choose the required principal components
plot (cumsum (prop_varex), xlab = “Principal Component”, ylab = 
“Cumulative Proportion of Variance Explained”, type = “b”)
#nearly pc1 to pc75 explains variance well. So we can choose these 
principal components and discard others.

Table 4: Feature vector corresponding to first two eigen values

X1 X2

0.36138659 −0.65658877
−0.08452251 −0.73016143
0.85667061 0.17337266
0.35828920 0.07548102

Table 6: Sample of the final reduced dataset with just two 
columns

X1 X2

−2.684126 −0.3193972
−2.714142 0.1770012
−2.888991 0.1449494
−2.745343 0.3182990
−2.728717 −0.3267545
−2.280860 −0.7413304

Table 5: Transpose of the feature vector

Feature_
vectors

[1] [2] [3] [4]

X1 0.361386 −0.08452251 0.8566706 0.35828920
X2 −0.656588 −0.73016143 0.1733727 0.07548102

Fig. 1 : Cumulative proportion of variance explained
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Proportion of variance explained for first 10 principal components

0.27512611, 0.10787279, 0.07843598, 0.06887855, 0.06004577, 
0.04251144, 0.03758893, 0.03160052, 0.02903681, 0.02415692.

The first principal component captures 27% of variance from the 
whole dataset, second principal component captures 10.7% and so 
on.

From the Fig. 1 we are able to understand that the first 75 principal 
components are able to capture most of the variance from the whole 
dataset. Hence we can choose these 75 principal components as the 
reduced dimensions from the whole data of 279 attributes.

CONCLUSION

In this survey, four different dimensionality reduction techniques 
have been studied. The selection of dimensionality reduction 
technique is based on the scenario, for example, the nature of 
the dataset that has to be reduced. The dimensionality reduction 
techniques are been performed to reduce the time elapsed in 
processing high-dimensional data, improve accuracy and efficiency 
in the analysis. An experiment that demonstrates the PCA method 
and how it helps in performing dimensionality reduction of data has 
been explained.

In future, the implementation of each of these methods in large dataset 
can be performed and these techniques can be analyzed based on 
time, accuracy in prediction and their efficiency.  The implementation 
of such techniques in health care datasets would be highly helpful for 
early diagnosis or prediction of diseases in a much lesser time with high 
accuracy.
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