ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH



# EFFECT OF DESENSITIZATION METHODS DURING THE EARLY MOBILIZATION PHASE IN POST-FRACTURE CONDITIONS OF UPPER EXTREMITY

# POONAM SUNIL SHAH1\*, SANDEEP BABASAHEB SHINDE<sup>2</sup>

<sup>1</sup>Department of Musculoskeletal Sciences, Faculty of Physiotherapy, KIMS "Deemed to be" University, Karad, Maharashtra, India. <sup>2</sup>Department of Musculoskeletal Sciences, Krishna College of Physiotherapy, KIMS "Deemed to be" University, Karad, Maharashtra, India. Email: poonamshah@ymail.com

### Received: 15 February 2018, Revised and Accepted: 28 March 2048

#### ABSTRACT

**Objectives:** The objectives of the present study were to determine the effect of desensitization methods during early phase of mobilization in postfracture conditions of upper extremity and to compare the effects of conventional physiotherapy methods and desensitization methods.

**Methods:** A total of 30 subjects having fractures of upper extremity were assigned into two groups. Subjects included in Group A received conventional treatment (hot moist fomentation, mobilization, free exercises, resisted exercises, and strength training exercises). Group B received desensitization methods. The pre- and post-assessment is taken using visual analog scale, range of motion (ROM), manual muscle testing, and disabilities of the arm, shoulder and hand.

**Result:** Desensitization showed significant improvement in ROM for elbow flexion (p=0.0427) (t=2.124) and in strength for shoulder flexion (p=0.0246) (t=2.376), shoulder extension (p=0.0246) (t=2.376), shoulder adduction (p=0.0246) (t=2.376), shoulder adduction (p=0.0246) (t=2.376), shoulder adduction (p=0.0246) (t=2.376), and elbow extension (p=0.0472) (t=2.075) when compared to the conventional treatment, but the conventional treatment showed overall improvement in all outcome variables.

Conclusion: Desensitization methods showed a significant effect on reducing pain and improving functional outcome.

Keywords: Upper extremity fracture, Pain, Early Mobilization, Desensitization.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons. org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i7.25297

### INTRODUCTION

The upper extremity is an integral part of our body for physical functioning. The upper extremity is performing various activities of daily living such as eating, combing, bathing, writing, picking up objects, carrying things from one place to other, and many activities [1].

The incidence of proximal humerus fracture is more common in women than men above the age of 60 years. In all the fractures of proximal humerus. 48% occurred at home, 43% at street, and remaining circumstances were not recorded. 89% of fractures are caused by moderate trauma. The convulsive seizures are also a cause in rare cases [2]. Supracondylar fracture of humerus is a common childhood injury accounting for 3-7% of all fractures. Supracondylar fracture occurs on playground includes fall from a monkey bar, fall from swing, slide, teeter-totter, and other. 70% of supracondylar fractures occur due to fall from height [3]. Distal radius fracture occurs 25% of all fractures of all fractures in pediatric population and 18% of all fractures in elderly age group. This fracture has a significant impact on health and well-being of young adults. In the age group of 19-49 years, men and women have a risk of equal incidence; while in the age group of 19-65 years, women have doubles the risk of incidence of distal radius fractures (it may be because of osteoporotic changes in women after the age of 50 years) [4]. The fractures most commonly occur due to increased level of physical activity reduced physical fitness and trauma [5,6]. The fractures of hand complex most commonly occur in men between the age of 15 and 35 years.

The fractures are having various complications which include hypovolemic shock, adult respiratory distress syndrome, compartment syndrome, injury to nerves, injury to vessels, injury to muscles, malunion, non-union, delayed union, muscle stiffness, avascular necrosis, and reflex sympathetic dystrophy. Along with these complications, paresthesia and hyperesthesia are most important sensory impairments in postfracture conditions. Hypersensitivity is also most commonly seen [7]. Paresthesia is numbness and tingling sensations, and hyperesthesia is increased sensitivity to mild painful stimuli [8]. Hypersensitivity leads to referred pain, deep aching, and steady pain [9]. The transmission of pain signals toward brain occurs due to the stimulation of nociceptors [10].

Prevalence of sensory impairments after fractures of upper extremity is 46%. Those increased sensory perceptions lead to difficulty in performing range of motion (ROM) activities in early post-immobilization phase after fractures [11]. To overcome such sensory impairments in early phase of mobilization, the technique called desensitization is used. Desensitization techniques are implemented to assist with normalizing sensations to the affected area. Desensitization includes the sensitization of peripheral nociceptors which helps in pain reduction [12]. The sensation of pain is carried out by nociceptors present over the nerve endings. During the process of desensitization when we stimulate them repeatedly, the temporal summation of these impulses takes place and the threshold level is increased. The temporal summation occurs when one presynaptic terminal is stimulated repeatedly. It plays an important role in facilitation of responses. Hence, the pain gets reduced [13,14]. Thus, in this study, the attempt is made to study the effects of desensitization methods for reducing pain, improving the ROM and maintaining the activities of daily living, and improving the quality of life of the patient.

### METHODS

This study was a randomized, prospective, comparative study conducted at our institution from June 2017 to February 2018, after obtaining the approval from the institutional scientific and ethics committee. Sample size was calculated using the following formula:

 $n=(2(Z\alpha+Z\beta)^2\sigma^2)/d^2$ 

Power of the study:  $Z\alpha$ =1.96 at 95% confidence level.  $Z\beta$ =1.28 at 90% power.  $\sigma$ =Combination of standard deviation. d=Mean difference between groups.

The criteria for inclusion were both male and female of every age group having fractures of one or both upper extremity. Subjects having sensory loss, diabetic neuropathy, arterial involvement, and pain with radiculopathy were excluded. 30 subjects with the mean age for Group A 38.8666±18.201 and for Group B 43.1333±20.66 (range 5–84 years, 19/30 women) participated in the study; written consent form was taken. Subjects were divided into two groups.

Group A: 15 subjects received conventional treatment (hot moist fomentation, mobilization, free exercises, resisted exercises, and strength training exercises).

Group B: 15 received desensitization methods (general shaking movements, gentle rub, light touch, warm and cold test tubes, joint compression, osteopressure, mirror therapy, tapping, quick icing, stretch resistance, and tendinous pressure). All the subjects were informed about the experimental protocol and gave written consent before their participation.

#### Measurement procedure

The pre-treatment and post-treatment assessment was done by outcome measures such as visual analog scale (VAS), ROM, manual muscle testing (MMT), and disability of the arm, shoulder and hand (DASH) questioner.

VAS score was taken before and after the treatment. ROM of upper extremity is calculated before and after the treatment using universal goniometer. MMT of all muscle groups of upper extremity is noted.

### Statistical analysis

The data were entered into Microsoft Office Excel 2007. The data were analyzed using Instat software. Descriptive statistics were used

to analyze baseline data for demographic data. Paired t-test was used to find the significance of parameters between pre- and post-test, and p<0.05 was considered to be statistically significant. The unpaired t-test was used to find out the significance of parameters between pre- pre and post-post.

#### **RESULTS AND DISCUSSION**

In this study, 30 subjects had participated who were undergone surgery for the fractures of an upper extremity based on inclusion and exclusion criteria. Of these 30 subjects, 11 were male and 19 were female. The subjects were evaluated and divided into two groups. Group A was included 15 subjects and was given the conventional treatment of the hot fomentation, joint mobilization, free exercises, resisted exercises, and strengthening exercises of upper extremity. The Group B was included 15 subjects and had given the methods of desensitization along with the conventional treatment of Group A (Table 1).

Intragroup comparison (within the group) was analyzed statistically using paired t-test for VAS, ROM, MMT, and DASH score. This showed that there was a significant difference of Group A VAS score with p<0.0001, ROM score with p<0.0001, MMT score with p<0.0001, and DASH score with p<0.0001.

Similarly, there was extremely significant difference of Group B, VAS score with p<0.0001, ROM score with p<0.0001, MMT score with p<0.0001, and DASH score with p<0.0001 (Table 2).

Intragroup comparison (within the group) was analyzed statistically using paired t-test for VAS, ROM, MMT, and DASH score, and intergroup comparison (between the group) was analyzed statistically using unpaired t-test.

Intergroup comparison (between groups) was analyzed statistically using unpaired t-test. This showed that pre-intervention there was no statistically significant difference seen for VAS score with p $\leq$ 0.3727. The pre-intervention ROM score showed no significant difference for shoulder flexion (p $\leq$ 0.4630), shoulder extension (p $\leq$ 0.2896), shoulder adduction (p $\leq$ 0.7852), elbow extension (p $\leq$ 0.6656), wrist flexion (p $\leq$ 0.6759), and wrist extension (p $\leq$ 0.7391). Pre-intervention ROM scored significance for shoulder abduction (p $\leq$ 0.0435) and

### Table 1: Pre-post data analysis in Group A

| Group A            | VAS             | ROM              |                 | ММТ             |                 |                 |                 | DASH             |
|--------------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|
|                    |                 | Flexion          |                 | Abduction       | Flexion         |                 | Abduction       |                  |
|                    |                 | Shoulder         | Elbow           | Shoulder        | Shoulder        | Elbow           | Shoulder        |                  |
| Pre:<br>Mean±SD    | 6.733±2.549     | 119.2±33.616     | 102.86±40.010   | 104±37.154      | 3.6±0.5071      | 3.266±3.266     | 3.6±0.5071      | 58.044±21.800    |
| Post:<br>Mean±SD   | 4.86±2.346      | 133.73±33.82     | 115.8±38.059    | 119.66±33.698   | 3.866±0.3519    | 3.866±0.3519    | 3.866±0.3519    | 39.054±17.692    |
| p value<br>T value | 0.0001<br>8.671 | 0.0001<br>18.077 | 0.0001<br>9.008 | 0.0001<br>7.562 | 0.0406<br>2.256 | 0.0004<br>4.583 | 0.0406<br>2.256 | 0.0001<br>11.597 |

VAS: Visual analog scale, ROM: Range of motion, MMT: Manual muscle testing, DASH: Disability of the arm, shoulder and hand, SD: Standard deviation

### Table 2: Pre-post data analysis in group B

| Group B            | VAS             | ROM              |                 | ММТ             |                 |                 |                 | DASH            |
|--------------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                    |                 | Flexion          |                 | Abduction       | Flexion         |                 | Abduction       |                 |
|                    |                 | Shoulder         | Elbow           | Shoulder        | Flexion         | Elbow           | Shoulder        |                 |
| Pre:<br>Mean±SD    | 5.733±3.432     | 112.866±8.280    | 74.33±22.723    | 29.866±5.449    | 3.733±0.4577    | 3.2666±0.4577   | 3.7333±0.457    | 59.428          |
| Post:<br>Mean±SD   | 3.533±2.100     | 127.066±5.873    | 91.266±23.526   | 37.2±3.840      | 4.2±0.4140      | 4.1333±0.3519   | 4.2±0.4140      | 37.684          |
| p value<br>T value | 0.0003<br>4.785 | 0.0001<br>10.551 | 0.0001<br>6.745 | 0.0001<br>9.648 | 0.0035<br>3.500 | 0.0001<br>9.539 | 0.0035<br>3.500 | 0.0001<br>5.928 |

VAS: Visual analog scale, ROM: Range of motion, MMT: Manual muscle testing, DASH: Disability of the arm, shoulder and hand, SD: Standard deviation

elbow flexion (p<0.0234). Pre-intervention MMT showed statistically no significant difference for shoulder flexion (p<0.4560), shoulder extension (p<0.4560), shoulder abduction (p<0.4560), shoulder adduction (p<0.4560), elbow flexion (p<0.7025), elbow extension (p<0.9999), wrist flexion (p<0.4605), and wrist extension (p<0.2849). Pre-intervention DASH score showed no significance with p<0.8588 (Table 3).

The exercises are having a great importance during the early mobilization phase in post-fracture conditions of upper extremity. The desensitization methods are also been used along with these exercises to control the pain and in improving the strength and ROM of an affected area. The purpose of this study was to find out the effect of desensitization methods during the early mobilization phase in post-fracture conditions of upper extremity. Reviewing the various studies, it was analyzed that conservative management, surgical management, and post-operative rehabilitation were the routine guidelines for treating the subjects with an upper extremity fractures. This study was undertaken considering all the mentioned points and sole aim of this study was to evaluate the effect of desensitization methods during early mobilization phase in early mobilization phase in post-fracture conditions of upper extremity.

Harden *et al.* in complex regional pain syndrome studied that the desensitization methods are an effective as a treatment protocol for the complex regional pain syndrome [11]. They studied about the various aspects of desensitization methods and this was combined with the psychotherapy. This study showed that desensitization is important to improve ROM and aerobic capacity of the individual. Norman Harden *et al.* in article complex regional pain syndrome: Practical diagnostic and treatment guidelines 4<sup>th</sup> edition studied that the gradual desensitization improves the functions of the joint and reduces the pain. This improves the functional capability of the individuals [11].

Jeanine Yip Menck, Susan Mais Requejo, and Kornelia Kulig in thoracic spine dysfunction in upper extremity complex regional pain syndrome Type 1 studied that the patent having wrist and hand trauma with an allodynia had undergone the desensitization treatment, and the intensity of pain was decreased, was able to perform all the activities of daily living, and the ROM was improved [12]. Osteoporosis is a disease characterized by an enhanced risk of sudden fractures due to reduced bone mass, structural deterioration of bone tissue, and weakness of skeletal strength [15]. Patients with osteoporosis respond poorly to the post-immobilization physiotherapy interventions. Early activity motion is recommended for patients after fixation of distal radius fracture, surgical repair of flexor or extensor tendon injuries, and surgical tendon transfer [16].

Various recent approaches are used in treating subjects of postoperative upper extremity fractures, but this study concluded that the combination of desensitization along with conventional physiotherapy rehabilitation was effective in decreasing pain and improving quality of life than providing post-operative rehabilitation alone. The advantage of desensitization methods is that it normalizes the sensations of an affected area. This reduces the pain and ultimately it helps in improving the ROM and strength of an affected part. This was results in the lessening the duration of rehabilitation process. Hence, it improves the quality of life of patients.

### CONCLUSION

We conclude that the combination of desensitization along with conventional physiotherapy was effective in decreasing pain, improving ROM, and muscle strength than the conventional physiotherapy alone. Desensitization showed significant improvement in ROM for elbow flexion and in strength for all the components except wrist flexion and extension when compared to the conventional treatment, but the

| Table 3: Pre-bre and post-bost data analysis between Group A and Grou |
|-----------------------------------------------------------------------|
|-----------------------------------------------------------------------|

| Outcome measures  | Mean±SD        | p value       | T value |        |  |
|-------------------|----------------|---------------|---------|--------|--|
|                   | Group A        | Group B       |         |        |  |
| VAS               |                |               |         |        |  |
| Pre               | 6.733±2.549    | 5.733±3.432   | 0.3727  | 0.9059 |  |
| Post              | 4.866±2.356    | 3.533±2.100   | 0.1130  | 1.636  |  |
| ROM               |                |               |         |        |  |
| Flexion           |                |               |         |        |  |
| Shoulder          |                |               |         |        |  |
| Pre               | 119.6±34.054   | 112.86±8.280  | 0.4630  | 0.7441 |  |
| Post              | 153.66±92.122  | 127.46±5.553  | 0.2809  | 1.099  |  |
| Elbow             |                |               |         |        |  |
| Pre               | 103.533±40.574 | 74.733±22.723 | 0.0234  | 2.399  |  |
| Post              | 115.8±38.059   | 91.26±23.526  | 0.0427  | 2.124  |  |
| Abduction         |                |               |         |        |  |
| Shoulder          |                |               |         |        |  |
| Pre               | 104±37.154     | 126.4±17.422  | 0.0435  | 2.114  |  |
| Post              | 119.533±33.619 | 139.6±18.791  | 0.0533  | 2.018  |  |
| MMT               |                |               |         |        |  |
| Flexion           |                |               |         |        |  |
| Shoulder          |                |               |         |        |  |
| Pre               | 3.6±0.5071     | 3.733±0.4577  | 0.4560  | 0.7559 |  |
| Post              | 3.866±0.3519   | 4.2±0.4140    | 0.0246  | 2.376  |  |
| ElDOW             | 2 266 10 4577  | 2 22 10 4000  | 0 7025  | 0.2054 |  |
| Pre               | 3.200±0.4577   | 3.33±0.4880   | 0.7025  | 0.3854 |  |
| Abduction         | 3.000±0.3519   | 4.000±0.4577  | 0.1905  | 1.542  |  |
| Shoulder          |                |               |         |        |  |
| Pre               | 3 6+0 5071     | 3 733+0 4577  | 0.4560  | 0 7559 |  |
| Post              | 3.866+0.3519   | 4 2+0 4140    | 0.0246  | 2 376  |  |
| DASH              | 0.000=0.0017   |               | 0.0210  | 2.070  |  |
| Pre-intervention  | 58.177±21.649  | 59.428±16.127 | 0.8588  | 0.1795 |  |
| Post-intervention | 39.054±17.692  | 37.684±19.261 | 0.8407  | 0.2029 |  |

VAS: Visual analog scale, ROM: Range of motion, MMT: Manual muscle testing, DASH: Disability of the arm, shoulder and hand, SD: Standard deviation

conventional treatment showed overall improvement in all outcome variables.

# ACKNOWLEDGMENT

We acknowledge the guidance and constant support of Dr. Varadharajulu G, Dean, Faculty of Physiotherapy, Karad, Dr. Sandeep Shinde, and Dr. Kakade SV, for help in statistical analysis.

# AUTHOR'S CONTRIBUTION

Poonam S. Shah conducted literature review for this manuscript, developed introduction section of the manuscript together with the discussion of the study findings, collected data, and analyzed the data. Dr. Sandeep B. Shinde provided a description of the background information and participated in preparation of the manuscript. All the authors read and approved the final manuscript.

### **CONFLICTS OF INTEREST**

The authors declare that there are no conflicts of interest concerning the content of the present study.

### REFERENCES

- Chaurasia BD. B. D. Chaurasia Human Anatomy Upper Limb, Thorax. 6<sup>th</sup> ed., Vol. 1. New Delhi: CBS Publishers and Distributors; 2013. p. 140-61.
- Kristiansen B, Barfod G, Bredesen J, Erin-madsen J, Grum B, Horsnaes MW, *et al.* Epidemiology of proximal humerus fractures. Acta Orthop Scand 1987;58:75-7.
- 3. Farnsworth CL, Silva PD, Mubarak SJ. Etiology of supracondylar

humerus fracture. J Pediatr Orthop 1998;18:38-42.

- Nellans KW, Kowalski E, Chung KC. The epidemiology of distal radius fractures. Hand Clin 2012;28:113-25.
- Baily DA, Wedge JH, McCulloh RG, Martin AD, Bernhardson SC. Epidemiology of fractures of distal end of radius in children as associated with growth. J Bone Joint Surg 1989;71-A:1225-31.
- van Onselen EB, Karim RB, Hage JJ, Ritt MJ. Prevalence and distribution of hand fractures. J Hand Surg Br 2003;28:491-5.
- Maheshwari J, Mhaskar VA. Essential Orthopaedics. 5<sup>th</sup> ed. New Delhi: JP Medical Ltd.; 2015. p. 13-23.
- Tyagi N, Goel R. Modls for neuropathic pain: A review. Int J Pharm Pharm Sci 2014;6:36-9.
- David J. Magee Orthopaedic Physical Assessment. 6<sup>th</sup> ed. Canada: Elsevier Health Sciences; 2014. p. 4-5.
- Thakur S, Shrivastav N. An update on neuropathic pain models. Int J Pharm Pharm Sci 2016;8:11-6.
- Harden RN, Oaklander AL, Burton AW, Perez RS, Richardson K, Swan M, *et al.* Complex regional pain syndrome: Practical diagnostic and treatment guidelines, 4<sup>th</sup> edition. Pain Med 2013;14:180-229.
- Menck JY, Requejo SM, Kulig K. Thoracic spine dysfunction in upper extremity complex regional pain syndrome Type 1. J Orthop Sports Phys Ther 2003;30:401-9.
- Sembulingam K, Sembulingam P. Essentials of Medical Physiology. 6<sup>th</sup> ed. New Delhi: JP Medical Ltd.; 2013. p. 785-6.
- Vierck CJ, Wong F, King CD, Mauderli AP, Schmidt S, Riley III. Characteristics of sensitization associated with chronic pain conditions. Clin J Pain 2014;30:119-28.
- Pankova S, Tsvetkova D. Role of phytoestrogens in prevention of osteoporosis. Int J Curr Pharm Res 2015;7:1-6.
- Roll SC, Hardison ME. Effectiveness of occupational therapy interventions for adults with musculoskeletal conditions of the forearm, wrist, and hand: A systematic review. Am J Occup Ther 2017;71:1-12.