INTRODUCTION

Diarrhea is a common gastrointestinal disorder affecting people of all ages worldwide. Diarrhea is usually characterized by the passage of a large volume of loose or watery stool at an increased frequency usually 3–4 times a day or stool volume >200 ml/day irrespective of the cause, be it infectious or not [1-3]. Diarrhea results from an imbalance between absorption and secretory processes that occur in the intestinal mucosa, and it is associated with excessive loss of essential electrolytes such as sodium ions, potassium ions, and chloride ions leading to dehydration and electrolyte imbalances [4,5]. Diarrheal diseases are usually associated with low living standards, poor sanitation infrastructure and poor access to portable, and safe-treated water sources [6,7]. Many rural dwellers depend mostly on the pond and river waters, whereby the community members share with household animals [8,9]. Reports suggest that about 2.4 billion people do not have basic sanitation with 1.1 billion people lacking access to improved and treated water supply worldwide [10]. South Africa is commended for achieving the water and sanitation targets for the millennium development goal with over 90% of South Africans having access to clean public water. However, estimates indicate that there are 6 million households and 1.4 million households which still lack access to clean water and sanitation services, respectively [11], putting this group of people at risk of getting diarrheal diseases.

Diarrhea leads to death if dehydration and electrolyte loss persist, and become too severe without rehydration or treatment [12,13]. Worldwide, diarrhea claims several million lives annually and is reportedly to be the second leading cause of deaths mostly those of infants [14]. For instance, global mortality estimate from diarrhea is reported to be over 1.5 million deaths of children under the age of five annually [15]. In 1998, a estimated number of people killed by diarrhea worldwide were 7.1 [16]. The prevalence and incidences of diarrhea are on the rise especially in developing nations including South Africa. For instance, every year, South Africa reports about 3 million incidents of diarrheal cases requiring treatment. Furthermore, in South Africa alone, every year, and diarrheal diseases are claimed to be responsible for about 43000 deaths, with under five deaths accounting for 20% [17].

Diarrhea is treated with a number of available conventional drugs the most efficacious of which is loperamide, which acts both as an antisecretory and antimitotility activities probably through activation of the sympathetic α2-adrenergic pathway. However, use of these conventional drugs has some limitations as some present with undesirable effects such as vomiting, fever, constipation, bronchospasms, dry mouth, and abdominal pains among others [19] and in addition, most infectious diarrhea are treated with a course of antibiotics, which currently is faced with massive drug-resistant challenges [20,21]. Furthermore, they are expensive and not easily accessible to ordinary poor rural communities. In most cases, they are not even available due to lack of adequate health facilities such as clinics and hospitals that are located at a very far distance from the community members [22]. It is because of these limitations that people resort to use of herbal remedies and other alternative treatments which have been perceived to be effective, affordable, and accessible and indeed with fewer or no side effects.

Worldwide, about 80% of communities rely on herbal remedies to treat various human ailments including diarrhea and other gastrointestinal...
disorders [23]. Moreover, the WHO has encouraged the use of traditional medicinal plants for the treatment and prevention of diarrhea worldwide [24, 25]. A number of medicinal plants have been evaluated for their anti-diarrheal properties, and reports indicate that they possess antispasmodic activities, delay gastrointestinal transit, inhibit motility of the gut, and reduce the intraluminal fluid accumulation with a concomitant enhancement of water and ion absorption [26-27]. **Eriobotrya japonica** (EEJ) Lindl. commonly known as loquat tree is one of such plants which is popularly and commonly used in the traditional medicine practice by several communities in treating various human diseases including diarrhea and other gastrointestinal-associated disorders by many rural communities of South Africa, especially in the Eastern Cape Province. Several biological activities of this plant have been reported. For instance, extracts obtained from this plant are reported to possess anti-inflammatory, antidiabetic, antioxidant, antiallergy, hyperleptinemia, hyperinsulinaemia, and several other disorders [28-32]. Despite its long traditional use in the treatment of diarrhea, there is little documented scientific information regarding its anti-diarrheal properties. The present study, was, therefore, conducted to scientifically evaluate the antidiarrheal effect of ethanolic leaf extract of EEJ using various models of diarrhea in an attempt to establish its efficacy and possible mechanism(s) of actions.

METHODS

Plant material

Leafy parts of EEJ were collected from areas surrounding Walter Sisulu University, Mthatha Campus. Identification and authentication of the plant were done by a senior taxonomist of the herbarium section, Department of Biological Sciences Walter Sisulu University, Mthatha Campus. A herbarium specimen was prepared and deposited with a voucher number: Nomathithi 1 (KEI).

Preparation of ethanolic leaf extract of EEJ

The leaves were shredded and allowed to air-dry under shade at room temperature for 3 w. The dried leaves were then milled into powder using a commercial blender. The powdered material was soaked in 70% ethanol and allowed to stay for 2 d with continuous shaking using (Labcon) platform shaker machine at room temperature. The resultant mixture was filtered using Whatman No. 1 filter paper in Buchner funnel. The filtrate was concentrated using the rotary evaporator under reduced pressure at 55°C. The semi-solid concentrated extract was finally dried in an oven at 40°C to obtain a crude extract which was designated EEJ and was kept in a bio-freezer at −75°C until the day of experiments.

Animals

Sprague Dawley rats of both sexes, weighing 200–250 g were used for the study. Rats were supplied by Shalom Laboratories and housed in the storage facility in the Department of Physiology, Walter Sisulu University. The animals were kept in polypropylene open top cages (four in each cage) and were maintained at an ambient temperature of 25 ± 2°C and 12 h light/12 h dark regime. The animals were acclimatized to the animal housing storage unit and laboratory conditions for 2 w before the commencement of the experiment and during this period animals were fed with standard rat pellet chow (Epol SA) and water *ad libitum*. The experimental protocol and all procedures were approved by the Faculty of Health Sciences Research Ethics Committee, Walter Sisulu University. Animals were handled in compliance with the Guide for care and use of Laboratory Animals (NIP Publication No. 85 (23), revised in 1996).

Experimental design

The cytotoxicity test of the extract was performed using Brine Shrimp lethality bioassay. To establish the antidiarrheal activity of EEJ, the extract was screened against various models of diarrhea, namely castor oil-induced diarrhea, castor oil-induced enteropooling, and castor oil-induced gastrointestinal propulsion in rats. Before commencement of the experiments, the rats were fasted either for 18 or 24 h depending on the experimental procedure. Administration of the extract and loperamide was performed by intragastric gavage using straight feeding needles suitable for the animal depending on its size, whereas yohimbine and atropine were administered intraperitoneally (i.p) in live animals.

Determination of cytotoxicity of EEJ

The cytotoxic effect of EEJ was carried out using Brine Shrimp lethality bioassay according to the model described by Nguta et al. [33], with slight modification. Brine shrimps (*Artemia salina*) were hatched using brine shrimp eggs in a rectangular vessel, containing 2L of sterile artificial seawater (prepared using NaCl 38 g/L) under constant aeration for 48 h, with artificial light shine on the opposite side of the rectangular hatchery. After hatching was achieved, active *nauplii* were collected from the brighter side of the hatchery and used for the assay. 10 *nauplii* were drawn through a glass capillary and placed into vials containing 4 ml of brine solution for the control, and for the experimental groups, 10 *nauplii* were placed in 4 ml of brine solution. The vial for the control group contained brine solution only, whereas the vials for experimental groups contained brine solution and EEJ of various concentrations (1000 µg/ml, 500 µg/ml, 250 µg/ml, 125 µg/ml, 62.5 µg/ml, and 31.25 µg/ml) with 3 duplicates per concentration. The mixtures were maintained at room temperature under constant light, and a 24 h survival larvae count was recorded. The mortality rate was determined as follows:

\[
\% \text{ deaths} = \left(1 - \frac{\text{Total } \text{ nauplii} - \text{ Alive } \text{ nauplii}}{\text{Total } \text{ nauplii}}\right) \times 100\%
\]

Lethal concentration (LC₅₀) determination

The median LC₅₀ in µg/ml, 95% confidence interval and slope was determined after the 24 h count using the probit statistical analysis method [34]. LC₅₀ value of >1000 µg/ml is considered non-toxic, LC₅₀ value 2500 µg/ml and ≤1000 µg/ml is considered weak toxic, and LC₅₀ value <500 µg/ml is considered toxic [35].

Effect of EEJ on castor oil-induced diarrhea in rats

The antidiarrheal property of EEJ against castor oil-induced diarrhea was performed using a method described by Zavala-Mendoza et al. [36] with slight modifications. In brief, the rats were fasted for 18 hours before the commencement of the experiment with free access to water. A total number of 42 rats were randomly allocated into 7 groups with 6 rats per group as follows:

- Group I was administered with normal saline (2 ml/Kg/bwt) and acted as a negative control group. Groups II, III, and IV were administered 100, 200, and 400 mg/kg/bwt of EEJ, respectively.
- Group V was administered loperamide, a standard anti-diarrheal drug at a dose of 5 mg/kg/bwt and acted as a positive control. In a separate experiment, rats in Groups VI and VII were pre-treated with yohimbine (1 mg/kg/bwt) a selective α2-adrenergic receptor blocker and prazosin (1mg/kg/bwt.), a selective α1-adrenergic receptor blocker respectively, 30 min before the dose of 400 mg/kg of EEJ was administered. After 1 h of various doses of EEJ and loperamide administration, 2 ml/kg/bwt of castor oil was administered orally to each rat to induce diarrhea. The animals were placed in individual cages lined with adsorbent papers. The cages were then observed for 4 h for the presence of characteristic diarrheal droppings. Time for the onset of diarrhea, total number of wet droppings and semi-solid droppings was recorded for each cage during the 4 h period of observation. The time for onset was measured as the time interval between the administration of castor oil and the first appearance of wet droppings in minutes. The absence of wet droppings was considered as protection from diarrhea, and the percentage protection was calculated according to the formula described by Umukoro and Ashorobi [37] as follows:

\[
\text{Protection} = \left(1 - \frac{\text{NWDC} - \text{NWDT}}{\text{NWDC}}\right) \times 100\%
\]

Where NWDC=Number of wet droppings in control group and NWDT=Number of wet droppings in treatment groups.

Kamadyaapa, et al.

Effect of EEJ on gastrointestinal propulsion in rats
The effect of EEJ on gastrointestinal transit (motility) was investigated in rats using a method described by Marona and Lucchesi [38] with a slight modification. In brief, the rats were fasted for 24 h before the commencement of the experiment with free access to water. 36 rats were randomly allocated into 6 groups with 6 rats per group as follows:

Group I was given 2 ml/kg/bwt of normal saline and acted as a negative control group. Groups II, III, and IV were administered 100, 200, and 400 mg/kg/bwt of EEJ, respectively. To check whether EEJ has antimotility activity comparable to drugs with known antigastointestinal motility, rats in Group V were given atropine sulfate (0.3 mg/kg/bwt i.p) muscarinic receptor antagonist. In separate experiment, rats in Group VI were pre-treated with yohimbine (1 mg/kg/bwt i.p) a selective α2adrenergic receptor blocker, 30 min before the dose of 400 mg/kg of EEJ was administered. After 1 h of administration of the normal saline, different doses of EEJ and atropine sulfate, each animal was given 2 ml of the standard charcoal meal (10% activated charcoal suspension in 2% tween 80) and 1 ml of castor oil. After 1 hour of charcoal meal administration, each rat was sacrificed by cervical dislocation, and its abdomen was opened by midline incision. The small intestine was immediately isolated. The total length of the intestine from pylorus to caecum (total length of small intestine) and the distance traveled by the charcoal (length traveled by charcoal meal) were measured using a ruler in centimeters (cm). The peristaltic index (PI) for each rat was calculated and expressed as a percentage (%) of the distance traveled by the charcoal meal relative to the total length of the small intestine. The PI and percent inhibition relative to control were calculated according calculated according to Degu et al [39] as follows:

\[\text{PI} = \frac{\text{LCM}}{\text{LSI}} \times 100\% \]

Where: PI=Peristaltic Index
LCM=Length traveled by charcoal meal; LSI=Total length of small intestine

\[\% \text{Inhibition} = \frac{[A-T]}{A} \times 100 \]

Where A=Distance traveled by charcoal meal in control group and T=Distance traveled by charcoal meal in treated groups.

Effect of EEJ on castor-oil induced enteropooling
The rats were fasted for 24 h before the commencement of the experiment with free access to water. 42 rats were randomly allocated into 7 groups with 6 rats per group as follows:

Group I was administered with 2 ml/kg/bwt of normal saline and acted as a negative control. Groups II, III, and IV were administered 100, 200, and 400 mg/kg/bwt of EEJ, respectively. Group V was administered loperamide, a standard anti-diarrheal drug at a dose of 5 mg/kg/bwt and acted as a positive control. In a separate experiment, rats in Groups VI and VII were pre-treated with yohimbine (1 mg/kg/bwt i.p) a selective α2adrenergic receptor blocker and prazosin (1 mg/kg/bwt i.p) a selective α1adrenergic receptor blocker respectively, 30 min before the dose of 400 mg/kg of EEJ was administered. After 1 h in each group were orally administered 2 ml/kg/bwt of castor oil. 30 min later, each rat was sacrificed by cervical dislocation, and its abdomen was opened by midline incision, and small intestine was ligated at both the pyloric and ileoceaical junctions before it was isolated and weighed. The intestinal contents were squeezed and emptied into the graduated measuring cylinder, and the volume of contents was recorded. The intestine was reweighed without the intestinal contents, and the difference between the full and empty intestines was calculated, and percent inhibition was determined.

Statistical analysis
GraphPad Prism software was used for all analysis. The data were presented as means plus or minus standard errors of the means (SEM). One-way analysis of variance (ANOVA) followed by Tukey multiple comparison tests was employed to compare the treatment means with control means. Student’s unpaired t-test was used to compare individual means for differences. p<0.05 was considered statistically significant.

RESULTS
Cytotoxicity of EEJ
The median LC_{50} after the 24 h count using the probit statistical analysis method was found to be 1225 μg/ml and was considered non-toxic since it is >1000 μg/ml.

Effect of EEJ on castor-oil induced diarrhea
Oral administration of 2 ml of castor oil produced marked copious diarrhea in all rats in the vehicle-treated control group during the 4 h period of observation. Fig 1a and b shows that oral administration of EEJ significantly (p<0.05) and dosedependently reduced the number of wet feces induced by castor oil, with groups of 100, 200, and 400 mg/Kg/bwt producing 13, 5, and 0 number of wet feces, respectively, as compared with negative control group with 21 wet feces, after a 4 h period. A dose of 400 mg/Kg/bwt and loperamide (5 mg/Kg/bwt)

Statistical analysis
GraphPad Prism software was used for all analysis. The data were presented as means plus or minus standard errors of the means (SEM). One-way analysis of variance (ANOVA) followed by Tukey multiple comparison tests was employed to compare the treatment means with control means. Student’s unpaired t-test was used to compare individual means for differences. p<0.05 was considered statistically significant.

RESULTS
Cytotoxicity of EEJ
The median LC_{50} after the 24 h count using the probit statistical analysis method was found to be 1225 μg/ml and was considered non-toxic since it is >1000 μg/ml.

Effect of EEJ on castor-oil induced diarrhea
Oral administration of 2 ml of castor oil produced marked copious diarrhea in all rats in the vehicle-treated control group during the 4 h period of observation. Fig 1a and b shows that oral administration of EEJ significantly (p<0.05) and dosedependently reduced the number of wet feces induced by castor oil, with groups of 100, 200, and 400 mg/Kg/bwt producing 13, 5, and 0 number of wet feces, respectively, as compared with negative control group with 21 wet feces, after a 4 h period. A dose of 400 mg/Kg/bwt and loperamide (5 mg/Kg/bwt)
caused complete inhibition of defecation, suggesting 100% protection, whereas EEJ at 100 mg/kg and 200 mg/kg offered 38.1% and 76.19% protection, respectively, against castor oil-induced diarrhea. Pre-treatment with yohimbine significantly reversed the protective effect of EEJ (400 mg/kg) against castor oil-induced diarrhea (5.238% vs. 100% when EEJ [400 mg/kg] was administered alone). Pre-treatment with prazosin did not significantly mitigate the protective effect of EEJ (400 mg/kg) against castor oil-induced diarrhea (97.62% vs. 100%) when EEJ (400 mg/kg) was administered alone. Fig. 1c, on the other hand, shows that EEJ at 100 mg/kg and 200 mg/kg significantly delayed the time of onset of wet feces (143±17 and 177±28 min, respectively, as compared with vehicle-treated control, 56±10 min). The presence of yohimbine caused the onset of wet feces in EEJ (400 mg/kg) treated group at the 146th min.

Effect of EEJ on castor oil-induced gastrointestinal enteropooling

Table 1 shows the effect of oral administration of EEJ on castor oil-induced intestinal fluid accumulation. Oral administration of EEJ significantly (p<0.05) and dosedependently (100, 200, and 400 mg/kg/bwt) reduced the volume of intestinal contents with percent inhibition of 24.37%, 43.29%, and 79.83%, respectively, compared with the negative control group. The effect of EEJ (400 mg/kg) was comparable to loperamide (77.35%). The effect of EEJ at 400 mg/kg/bwt was significantly reversed in the presence of yohimbine (45.8% vs. 79.83% when EEJ [400 mg/kg]) was administered alone. Similarly, EEJ significantly and dosedependently (100, 200, and 400 mg/kg/bwt) reduced the weight of intestinal contents with percent inhibition of 26.82%, 45.8%, and 78.41%, respectively, compared with the negative control group. The effect of EEJ (400 mg/kg) was comparable to yohimbine (74.57%). The effect of EEJ at 400 mg/kg/bwt was significantly reversed in the presence of yohimbine (44.8% vs. 78.41% when EEJ [400 mg/kg]) was administered alone. The effect of EEJ at 400 mg/kg/bwt was not antagonized by prazosin.

Effect of EEJ on castor oil-induced gastrointestinal propulsion

Fig. 2a shows that oral administration of EEJ significantly (p<0.05) and dosedependently (100, 200, and 400 mg/kg/bwt) delayed the intestinal transit time of charcoal meal with PI of 61, 38.04, and 15.55, representing percent gastrointestinal motility reductions of 28%, 62%, and 83.92%, respectively (Fig. 2b), as compared with the negative control group with PI of 94.55. The effect of atropine at 0.3 mg/kg/bwt was more (+++) as compared with EEJ (400 mg/kg/bwt). EEJ: *Eriobotrya japonica*; VIC: Volume of intestinal content in ml, WIC: Weight of intestinal content in g, % inhibition means±SEM (n=6). *p<0.05; **p<0.01 significantly different compared with negative control group.

DISCUSSION

Diarrhea results from an imbalance between the gastrointestinal absorptive and secretory mechanisms leading to excessive fluid and electrolytes loss in the feces. It is evident enough that diarrhea occurs as a result of increased gastrointestinal motility and secretion as well as decreased intestinal fluid absorption. Therefore, anti-diarrheal drugs work by inhibiting either gastrointestinal motility or secretion or both [40]. The present study has demonstrated the potential anti-diarrheal properties of ethanolic leaf extract of EEJ in various models of experimental diarrhea, which may be attributable to its dual antisecretory and antimotility activities.

Na+/K+-ATPase is one of the intestinal key enzymes which plays an important role in the absorption of electrolytes and water in the intestine. Any disruption or inhibition of this enzyme may cause increased intestinal fluid secretion leading to diarrhea [41,42]. Castor oil-induced diarrhea is provoked by ricinoleic acid which, in part alters the intestinal mucosa permeability to electrolytes by interfering with the normal activity of Na+/K+-ATPase resulting in abnormal intestinal absorptive and secretory mechanisms [43,44]. In the present study, EEJ significantly inhibited castor oil-induced diarrhea probably by inhibiting intestinal lipase enzymatic activity on castor oil from liberating and releasing ricinoleic acid, an active metabolite of castor oil. Therefore, lack of availability of ricinoleic acid in the intestine indirectly ensured restoration of normal absorptive capacity of the Na+/K+-ATPase with the concomitant increased intestinal absorption of Na+ along with other electrolytes and water. Studies have demonstrated the potential of various herbal extracts to directly enhance the activities of Na+/K+-ATPase followed by apparent increased intestinal absorptive and decreased secretory capacity [45]. Similar argument may explain the possible direct stimulatory effect of EEJ on the activities of Na+/K+-ATPase which might have led to the increased intestinal absorptive and decreased secretory capacity resulting in protection against castor oil-induced diarrhea. Thus, EEJ may contain phytochemicals with both direct and indirect stimulatory activity on the Na+/K+-ATPase.

Table 1: The effect of EEJ on castor oil-induced intestinal fluid accumulation

<table>
<thead>
<tr>
<th>Treatment</th>
<th>VIC (ml)</th>
<th>% inhibition</th>
<th>WIC (g)</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle-treated control</td>
<td>5.57±0.301*</td>
<td>5.63±0.26**</td>
<td>24.37</td>
<td>4.12±0.28**</td>
</tr>
<tr>
<td>EEJ (100 mg/kg/bwt)</td>
<td>4.21±0.231**</td>
<td>43.29</td>
<td>3.05±0.17**</td>
<td>45.8</td>
</tr>
<tr>
<td>EEJ (200 mg/kg/bwt)</td>
<td>3.16±0.147**</td>
<td>79.83</td>
<td>1.21±0.162**</td>
<td>78.41</td>
</tr>
<tr>
<td>EEJ (400 mg/kg)</td>
<td>1.21±0.121**</td>
<td>45.8</td>
<td>3.06±0.314**</td>
<td>44.84</td>
</tr>
<tr>
<td>EEJ (400+yohimbine)</td>
<td>3.02±0.331*</td>
<td>78.14</td>
<td>1.30±0.231**</td>
<td>76.86</td>
</tr>
<tr>
<td>EEJ (400+prazosin)</td>
<td>1.21±0.134**</td>
<td>77.37</td>
<td>1.43±0.115**</td>
<td>74.57</td>
</tr>
</tbody>
</table>

Values are presented as mean±SEM (n=6), *p<0.05; **p<0.01 significantly different compared with negative control group and p = 0.05; †p<0.01 significantly different compared with EEJ (400 mg/kg/bwt). EEJ: *Eriobotrya japonica*; VIC: Volume of intestinal content in ml, WIC: Weight of intestinal content in g.
on the intestinal mucosa. Therefore, the resultant effect of EEJ due to its indirect and direct activation of Na+/K+-ATPase on the intestinal mucosa is decreased and increased gastrointestinal secretion and absorption, respectively, leading to marked reduction in fecal output and hence diarrhea.

The other possible mechanistic pathway through which ricinoleic acid triggers diarrhea is by activation of nitric oxide (NO) pathway. Ricinoleic acid is potentially cytotoxic to intestinal epithelial cells and causes increased mucosal permeability which is associated with increased intraluminal fluid accumulation [39]. NO is produced in response to cytotoxins such as ricinoleic acid to intestinal epithelial cells, thereby playing a protective role against cytotoxic-induced intestinal damage. Moreover, studies have demonstrated that pre-treatment of animals with L-NAME, a NO synthase inhibitor attenuates or prevents castor oil-induced diarrhea [46]. Therefore, it would be scientifically reasonable to suggest that certain phytochemicals contained in EEJ might have interfered with the NO pathway resulting in decreased NO synthesis and subsequently, decreased intestinal fluid secretion. On the other hand, considering that EEJ is crude extract, it is obvious that it contains large amount of fiber including protein tannates which make the intestinal mucosa more resistant and decrease secretion with a concomitant enhancement of intestinal absorption.

The enteric nervous system consisting of the myenteric and the submucosal, regulate the activities of the gastrointestinal tract through the secretomotor nerves that release agonists with either direct or indirect effects on epithelial ion transport. Vasoactive intestinal peptide and acetylcholine are the predominant transmitters with direct epithelial secretory effects released by secretomotor nerves [47]. Norepinephrine is the predominant sympathetic neurotransmitter and an agonist in the intestines. Activation of the sympathetic pathway through α2-adrenoceptors on enterocytes in the intestines causes inhibition of motor function of the intestines leading to inhibition of intestinal motility and secretion [48]. The present study has demonstrated the significant protective effect of EEJ against castor oil-induced diarrhea and enteropooling, with the highest dose of 400 mg/kg/bwt offering 100% protection against castor oil-induced diarrhea and 80% against castor oil induced entero-pooling, the effects of which were favorably comparable to that of loperamide, a standard antisecretory drug. The study further showed that the antisecretory activity of EEJ is in part mediated through activation of α2-adrenoceptors and not α1-adrenoceptors. This view was substantiated by comparing the protective effect of EEJ at 400 mg/kg/bwt in the absence and presence of yohimbine and prazosin against castor oil-induced diarrhea and enteropooling. EEJ at 400 mg/kg/bwt significantly reversed the gastrointestinal secretory effect of castor oil in the absence of yohimbine. However, this remarkable antisecretory effect of EEJ at 400 mg/kg/bwt was successfully antagonised by yohimbine, a selective α2-adrenoceptor blocker. Considering the significant protective effect of this highest dose of EEJ against castor oil-induced diarrhea and enteropooling, and its failure to demonstrate likewise in the presence of yohimbine, it would seem to suggest that the antisecretory activity of EEJ is mediated in part, through activation of α2-adrenoceptors, which resulted in marked inhibition of secretion-inducing neurotransmitters on the secretomotor nerves, thereby enhancing absorption. On the other hand, the protective effects of EEJ at 400 mg/kg/bwt against castor oil-induced diarrhea and enteropooling were significantly resistant to antagonism by the α1-adrenoceptors antagonist, prazosin. Therefore, failure of prazosin to significantly reverse the protective effect of highest dose of EEJ against castor oil-induced diarrhea and enteropooling precludes the involvement of α1-adrenoceptors in the antisecretory activity of EEJ.

The presently described study has further demonstrated the significant inhibitory activity of EEJ against castor oil-induced gastrointestinal propulsion. EEJ significantly reduced the PI in a dose-dependent fashion as demonstrated by its ability to reduce the distance traveled by a charcoal meal in the small intestine. The antimotility activity of EEJ would reduce the number and frequency of defecations, thereby preventing diarrhea. On the other hand, the decrease in gastrointestinal propulsion would allow intestinal contents more time of contact with the intestinal mucosa for the absorption which ultimately would reduce fecal output.

It is well established that activation of the sympathetic nervous system enhances fluid and electrolyte absorption through inhibition of gastrointestinal motility. Moreover, strong evidence suggests that activation of α2-adrenoceptors by various agonists mediates inhibition of smooth muscle contraction and hence peristalsis in small intestine probably through inhibition of acetylcholine release from enteric cholinergic nerves [49,50]. Thus, in addition, the present study has shown that the antimotility activity of EEJ was in part, mediated through activation of α2-adrenoceptors, since the antimotility activity of EEJ at 400 mg/kg/bwt against castor oil-induced gastrointestinal propulsion was significantly attenuated in the presence of yohimbine, a selective α2-adrenoceptor antagonist, probably through inhibition of acetylcholine release from enteric cholinergic nerves.

The present findings on the effect of EEJ on gastrointestinal motility are partly in agreement with Matamba et al. [51], who reported the anti-spasmyotic activity of ethanolic leaf extract of EEJ on isolated rabbit ileum in vitro and this relaxant effect was suggested to be mediated through blockade of histamine and muscarinic receptors.

Use of medicinal plants as therapies for various diseases has over years gained popularity partly due to the common belief that they are safe and have fewer side effects. However, many plant-based products may be toxic and have significant adverse effects on human beings. It is, therefore, imperative that potential toxicity of medicinal plants be determined before consumption of the plant materials. The present study carried out the toxicity study of EEJ using a simple and rapid brine shrimp lethality assay. This assay is widely employed in toxicological tests involving screening of large numbers of medicinal plant extracts for drug discovery [52,53] and as a matter of fact, some studies have reported significant correlation between the LC50 value obtained with brine shrimp lethality assay and the LD50 value obtained from the acute oral toxicity assay done in mice [54]. Therefore, this assay could conveniently and potentially replace other biological models such as in vivo assays involving the use of live laboratory animals which are constantly facing ethical issues. The study has demonstrated that EEJ is not toxic as determined by its higher LD50 value of 1225 µg/ml, probably suggesting safety of EEJ for human consumption. However, the fact that EEJ at 400 mg/kg/bwt completely abolished feces during the entire experimental duration just as loperamide did, it may seem to appear that, higher doses of EEJ may induce constipation, which is yet another gastrointestinal problem affecting many people worldwide [55]. Thus, it may be advisable that consumption of the materials derived from this plant be done with some degree of cautiousness especially at higher doses.

CONCLUSION

The present study has demonstrated the potential anti-diarrheal properties of ethanolic leaf extract of EEJ using various models of experimental diarrhea. The extract seems to mediate its anti-diarrheal activity in part, through activation of α2-adrenoceptors. The extract may also, on the other hand, mediate its effect through modulation of the Na+/K+-ATPase and NO pathways. Therefore, extracts from EEJ, if properly and adequately standardized, may serve as a safe and cost-effective, potential therapeutic agent, with anti-diarrheal properties. The study has shed more light on the scientific basis for the use of EEJ in the treatment of diarrhea and other associated gastrointestinal disorders by some communities of the Eastern Cape Province of the Republic of South Africa.

Limitations and recommendations

The present study has established only one mechanistic pathway through which EEJ mediates its anti-diarrheal effect, yet the other mentioned mechanisms are mainly based on speculations. Therefore, further investigations are warranted to establish other mechanistic pathways, through which, EEJ exerts its anti-diarrheal actions.
Furthermore, the study did not carry out a phytochemical analysis of the extract as such it is imperative that future studies should focus on identification, isolation, and screening of the active compounds for their antidiarrheal properties.

ACKNOWLEDGMENTS

The authors are grateful for the financial support provided by the office of the Directorate of Research, Walter Sisulu University, Republic of South Africa.

AUTHOR’S CONTRIBUTIONS

The study was initiated and designed by Dr Kamadyaapa while all authors equally contributed to both experimental work and preparation of the manuscript.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

2. UNICEF W. Why Children are Still Dying and What can be Done. WHO: Diarrhoea; 2009.
42. Zong W, Zhao G. Corosolic acid isolation from the leaves of Eriobotrya japonica showing the effects on carbohydrate metabolism and differentiation of 3T3-L1 adipocytes. Asia Pac J Clin Nutr 2007;16 Suppl:1:346-52.

