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ABSTRACT

Corosolic acid (CA) or 2β-hydroxyursolic acid is an ursane-type pentacyclic triterpene with a molecular formula of C30H48O4 and molecular weight 
of 473 g/mol. The 30-carbon skeleton and five six-membered rings (A−E) of CA are structurally similar to those of ursolic acid, asiatic acid, and 
23-hydroxyl CA. CA was first isolated from the leaf of Lagerstroemia speciosa and later from the fruit of Crataegus pinnatifida. Although L. speciosa 
(Lythraceae) remains the most important source of CA, Rosaceae and Lamiaceae are the dominant families. This synopsis is focused on the anticancer 
properties of CA as recent studies have generated new and additional knowledge on its oncology. CA has antitumor, antiproliferative, and apoptotic 
activities against many types of human cancer cells (including some murine cancer cells), which are inhibited through different molecular mechanisms. 
Non-apoptotic cell death has also been reported. Depending on the type of cancer cells, the cytotoxicity of CA is comparable to ursolic acid, its analog. 
Currently, there are no studies on the structure-activity relationship of CA. In ursolic acid, which is structurally similar to CA, the −OH group at C-3 and 
the −COOH group at C-28 exhibited cytotoxic activity.
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INTRODUCTION

Terpenes are one of the most widespread groups of natural products. 
Triterpenes, a group of terpenes, often have pentacyclic or tetracyclic 
structures. Pentacyclic triterpenes can be classified into lupane, 
oleanane, and ursane types. These compounds possess pharmacological 
properties, including anti-inflammatory, antioxidant, antiviral, 
antidiabetic, antitumor, anti-ulcerogenic, analgesic, hepatoprotective, 
and cardioprotective activities. There are several recent reviews on 
pentacyclic triterpenes, providing useful information on their natural 
occurrence, chemistry, and beneficial health effects [1-3]. Information 
in these reviews includes the ursane type of pentacyclic triterpenes, of 
which corosolic acid (CA) belongs.

Pharmacological activities of CA include antidiabetic [4,5], antibacterial [6], 
anti-inflammatory [7-9], anti-obesity [9-11], anti-atherosclerosis [7,12], 
cholesterol-reducing [13], osteoblast differentiation [14], 
antioxidant [15,16], and hepatoprotective [16,17] properties. Among 
these biological activities, the antidiabetic properties of CA are well 
documented [18-25] with several clinical trials conducted [26,27] and 
patents applied [28-32]. The beneficial effects of CA toward glucose and 
lipid metabolism involve multiple mechanisms such as enhanced cellular 
uptake of glucose, impaired hydrolysis of sucrose and starch, decreased 
gluconeogenesis, and regulation of lipid metabolism [4,5].

This synopsis is focused on the anticancer properties of CA as recent 
studies have generated new and additional knowledge on its oncology. 
This short review gives up-to-date data and information for scientists to 
conduct further research on CA and other pentacyclic triterpenes with 
similar molecular structures. The anticancer properties of CA have not yet 
been reviewed. There are several reviews on the anticancer properties 
of triterpenes. They include a review on ursane-type pentacyclic 
triterpenoids as useful platforms to discover anticancer drugs [33] and 
another review on triterpenes as potentially cytotoxic compounds [34].

COROSOLIC ACID 

CA is an ursane-type pentacyclic triterpene with a molecular formula 
of C30H48O4 and molecular weight of 473 g/mol [35]. The 30-carbon 

skeleton comprises five six-membered rings (A−E). Structurally, CA 
is similar to ursolic acid, asiatic acid, and 23-hydroxyl CA (Fig. 1). 
Differences between these four pentacyclic triterpenes are in R1 and R2 
of C-2 and C-23, respectively.

CA was first isolated from the leaf of Lagerstroemia speciosa [36] and 
later from the fruit of Crataegus pinnatifida [37]. A literature search 
for plant species containing CA was conducted and several interesting 
trends emerged. Leaves of L. speciosa remain the most important 
source of CA [19,38,39]. Surprisingly, no other species of the family 
Lythraceae, which L. speciosa belongs, have been reported. Among 
the 40 species reported in the literature, Rosaceae (16 species) and 
Lamiaceae (six species) are the dominant families. Species of Rosaceae 
belong to the genera of Agrimonia, Chaenomeles, Crataegus, Eriobotrya, 
Potentilla, Prunus, Pyrus, and Rubus. Species of Lamiaceae are of the 
genera Glechoma, Hyssopus, Orthosiphon, Perilla, Phlomis, and Salvia. 
This indicates that species of Rosaceae and Lamiaceae are rich in CA.

Native to South and Southeast Asia, L. speciosa is a semi-deciduous 
small- to medium-sized tree with obovate leaves that are 
opposite [40,41]. During each rainy season, trees would produce flushes 
of new leaves that are brilliant red in color (Fig. 2) before turning green. 
Borne on large, axillary, or terminal panicles, the attractive flowers have 
wrinkled pink or purple petals and yellow stamens (Fig. 3). Flowers 
emit a faint honey-like fragrance. Locally known as arjuna in India, 
bungur in Malaysia, Singapore, and Indonesia, ta-bak in Thailand, and 
banaba in the Philippines, L. speciosa is a common ornamental tree 
planted along roadsides, and in gardens and parks. The species has 
been traditionally used in folk medicine as a remedy for illnesses and 
ailments, particularly for lowering blood sugar level and reducing body 
weight, and as a remedy for diabetes [40].

In Thailand, the content of CA in L. speciosa leaves ranged from 0.01% 
to 0.75%, depending on the location and season of sampling [42]. In the 
Philippines, CA content of young red leaves of L. speciosa (58 µg/g) was 
almost 1.9 times that of mature green leaves (31 µg/g) and 1.5 times 
that of flowers (38 µg/g) [43]. The redness of young leaves was due to 
cyanidin 3-O-glucoside, the anthocyanin identified in the species for the 
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first time. There was a strong correlation (R=0.877) between the contents 
of CA and cyanidin 3-O-glucoside. Rich in CA, red leaves of L. speciosa 
are used for producing high-quality red banaba tea in the Philippines. 
Of 38 different plant extracts that are commercially available as dietary 
supplements, the content of CA was the highest in leaves of L. speciosa 
(14233 mg/kg), followed by aerial parts of Orthosiphon stamineus 
(1132 mg/kg) and flowers of Crataegus monogyna (993 mg/kg) [44]. 
In capsules and tablets containing L. speciosa, the content of CA ranged 
from 0.02 to 0.18 mg per capsule or tablet [45]. In leaves of Eriobotrya 
japonica, the content of CA was reported to be 0.36% [46].

ANTICANCER PROPERTIES

Cancer has six hallmark features of sustaining proliferative signaling, 
evading growth suppressors, resisting cell death, enabling replicative 
immortality, inducing angiogenesis, and activating invasion and 
metastasis [47,48]. Phytochemicals such as flavonoids [49], triterpenes 
including CA [50], and sesquiterpenes including zerumbone [51] that 
show promise as anticancer agents should be able to overcome one or 
several of these hallmark features.

CA isolated from the fruit of C. pinnatifida displayed cytotoxicity 
against HepG2 liver, SNU-C4 colorectal, HeLa S3 cervical, and K-562 
leukemia cancer cells with ED50 values of 4.8, 0.4, 1.0, and 4.3 μg/ml, 
respectively [37]. From the stem bark of Physocarpus intermedius, 
CA inhibited A549 lung, SK-OV-3 ovary, SK-MEL-3 melanoma, XF498 
central nervous system, and HCT15 colon cancer cells with ED50 values 
of 4.4, 3.9, 5.1, 5.5, and 4.7 μg/ml, respectively [52]. Cytotoxicity of CA 
was comparable to that of ursolic acid with ED50 values of 4.2, 3.6, 4.6, 
4.5, and 4.4 μg/ml against the same panel of cancer cells.

CA from the callus culture of E. japonica was cytotoxic to HSC-2 oral 
squamous and HSG salivary gland cancer cells with CC50 values of 10 
and 12 μg/ml [53]. CA from the root of Actinidia valvata inhibited HeLa 
cervical cancer cells with IC50 values of 45, 34, and 28 μM, obtained after 
24, 48, and 72 h, respectively [54]. From the leaf of Perilla frutescens, 
CA was cytotoxic to A549 lung, SK-OV-3 ovary, SK-MEL-2 melanoma, 
and HCT15 colon cancer cells with IC50 values of 10.86, 12.33, 11.65, 
and 10.73 μM [55]. Compared to CA, ursolic acid from P. frutescens 
exhibited stronger cytotoxic activity with IC50 values of 4.16, 3.82, 4.20, 
and 5.44 μM. The cytotoxic effect of CA, ursolic acid, and oleanolic acid 
against HCT116 colon cancer cells was compared [56]. Results showed 
that CA with an IC50 value of 24 μM was the most potent antiproliferative 
agent among the three structural analogs.

Currently, there are no studies on the structure-activity relationship of 
CA. Some information on ursolic acid, which is structurally similar to CA, 
is available [57]. For ursolic acid, the −OH group at C-3 and the −COOH 
group at C-28 (Fig. 1) exhibited cytotoxic activity. The C-3 configuration 
was important as the introduction of an amino group greatly enhanced 
cytotoxicity.

From the above cytotoxicity studies, CA has antitumor and 
antiproliferative activities against many types of human cancer cells, 
including some murine cancer cells. As listed in Table 1, apoptosis of 
cancer cells is induced through different molecular mechanisms involving 
mitochondrial mediation and/or caspase activation [54,56,58-62]; 
enhancement of sgnal transducer and activator of transcription 3 
(STAT3) and/or nuclear factor-κB [63-65]; downregulation of HER2 
signaling [66]; activation of AMPK or 5-FU through the inhibition 
of mammalian target of rapamycin [67,68]; impairment of tumor 
development by inhibiting the immunosuppressive activity of MDSC [69]; 
promotion of β-catenin degradation [70]; induction of G2/M cell cycle 
arrest and downregulation of phosphatidylinositol-3-kinase (PI3K)/Akt 
signaling [71]; disruption of maternal embryonic leucine zipper kinase-
forkhead box M1 signaling [72]; activation of nuclear factor erythroid 2-
related factor 2 [73]; and targeting the vascular endothelial growth factor 
receptor 2/steroid receptor coactivator/focal adhesion kinase pathway 
[74]. Inhibition of Caki renal carcinoma by CA is the only exception as cell 
death is non-apoptotic caused by the generation of lipid peroxidation and 
reactive oxygen species [75]. In addition, CA induced non-apoptotic cell 
death in other renal cancer cells (ACHN and A498), breast cancer cells 
(MDA-MB231), and hepatocellular carcinoma cells (SK-Hep1 and Huh7).

STAT3 regulates the expression of genes in response to cellular 
stimuli and plays a key role in cell growth and apoptosis while 
NF-κB transcription factors are central in immune responses [76]. 
The interaction between STAT3 and NF-κB signaling pathways 
collaboratively links inflammation to cancer. Overexpression of HER2 
signaling occurs in 15–30% of breast cancer and 10–30% of gastric 
cancer patients [77]. Suppression of HER2 can induce cell cycle 
arrest and apoptosis of cancer cells. Its therapy has delayed the time 
of progression and increased the survival rate in patients. mTOR, a 
serine/threonine kinase protein, is a potential target in cancer therapy 
and appears to operate downstream of the PI3K/Akt pathway [78]. 
Apoptosis is often linked with caspase activity to bring about the 
demise of a cell. However, it has become apparent that cells do die even 
when caspase function is blocked, a process known as non-apoptotic 
cell death [79].

Fig. 1: Corosolic acid and other pentacyclic triterpenes with 
similar molecular structures

Fig. 2: Lagerstroemia speciosa (banaba) tree with brilliant red 
young leaf flushes

Fig. 3: (a and b) Lagerstroemia speciosa with attractive pink (left) 
and purple (right) flowers
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CONCLUSION

This synopsis provides an update on the anticancer properties of CA, 
an ursane-type pentacyclic triterpene with a 30-carbon skeleton and 
five six-membered rings. Although L. speciosa (Lythraceae) remains the 
most important source of CA, Rosaceae and Lamiaceae are the dominant 
families. Studies have reported that the antitumor, antiproliferative, and 
apoptotic activities of CA are effective against many human cancer cell 
lines, including some murine cancer cells. Apoptosis involves different 
molecular mechanisms, and non-apoptotic cell death has also been 
reported. Future research on CA may focus on its structure-activity 
relationship, dose-response, and on the synthesis of CA derivatives with 
enhanced anticancer properties.
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