ORAL ADMINISTRATION OF RAW WHITE KIDNEY BEANS (PHASEOLUS VULGARIS L. VAR. BELDIA) INDUCES OVERGROWTH OF FECAL COLIFORMS AND LACTOBACILLI IN WISTAR RATS

NADER NCIRI1,2,3, TAESUB SHIN2, NAMJUN CHO**

1Intestinal Immunophysiology-Research Unit (02/RU/09-02), Faculty of Medicine of Tunis, University of Tunis El Manar, Bab Saadoun, Tunis, Tunisia. 2Department of Animal Resources, Fisheries and Food Technology, National Institute of Agronomy of Tunisia, El Mahraje, Tunis, Tunisia. 3School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education, Cheonan, Chungnam, Republic of Korea. Email: njuncho@koreatech.ac.kr

Received: 11 September 2017, Revised and Accepted: 11 October 2017

ABSTRACT

Objective: The comprehensive dynamics of fecal microbiota in response to the ingestion of toxic bean lectins or phytohemagglutinins has not been well studied. The study aimed at evaluating the gavage effects of a raw Beldia bean variety on food intake, growth performance, gastrointestinal organs, and fecal microflora in Wistar rats.

Methods: Twenty young adult male rats were randomly allotted into two groups of 10 rats each: Control rats were gavaged with 300 mg of a rodent pellet flour suspension and experimental rats were orogastrically fed a dose of 300 mg Beldia bean flour suspension (BBFS). Individual food intake, body weight, and fecal score were taken daily. To assess the impact on the gut flora, fecal samples were collected every day for 10 days. All animals were sacrificed on day 10, to obtain blood and internal organs samples.

Results: The results revealed that the gavage of a BBFS to rats had no marked influence on average daily of food intake and weight gain. No significant differences were found in the weights of the small intestine, spleen, liver, and thymus of rats given raw Beldia diet. The counts of coliforms and lactobacilli on pooled fecal specimens of BBFS-fed rats were increased significantly compared to controls.

Conclusion: In summary, the exposure to raw Beldia beans altered the fecal microbiota, without adverse effects on animals.

Keywords: Body weight, Coliforms, Fecal microflora, Food intake, Internal organs, Lactobacilli, Phytohemagglutinin, White kidney bean (Phaseolus vulgaris L.).

INTRODUCTION

Legumes, soybeans, and common beans, in particular, are vital sources of protein in many developed and developing countries. In addition to being eaten raw in salads, they are also consumed in cooked form in several dishes including casseroles, macaroni, and Rajma-chawal. They are also utilized in the preparation of rations and textured protein concentrates for animal consumption. An undesirable discovery was the occurrence of various antinutritional factors in legume seeds such as lectins, protease inhibitors, saponins, phytic acid, and tannins whose mechanism of action is still poorly defined and poorly understood. One of these factors is phytohemagglutinin (PHA), the heat-stable lectin from the kidney bean (Phaseolus vulgaris L.; Family: Fabaceae) [1], which, when ingested orally, results in diarrhea, impaired nutrition absorption, growth rate inhibition, and can even lead to the eventual death of PHA-fed animals [2,3]. These effects are believed to result from changes in the autochthonous microflora induced by the presence of PHA in the diet [2,4-7]. Information is accumulating on the effects of PHA on intestinal microflora, but there is a marked lack of information regarding the significance of these effects on fecal microbiota. It was decided, therefore, to examine the influence of a raw Beldia bean gavage on the food intake, body growth, weight of internal organs, and fecal microflora (namely, coliforms and lactobacilli) in Wistar rats.

METHODS

Plant materials

The common white beans (P. vulgaris L.), variety Beldia, were purchased in March 2017 from a local market in Ariana city, Tunis, Tunisia.

The seeds were cleaned manually to remove all foreign materials such as dust, dirt, stones, and broken seeds. The plant material was characterized and authenticated at the Department of Botany, the National Agricultural Research Institute of Tunisia, Ariana, Tunis, Tunisia. The beans were aseptically ground dry with a sterile mortar and pestle and then passed through the US Standard No. 200 sieve (75 µm). The powder was packed, sealed in polyethylene bags, and stored in a cold room at 4°C. The fine flour thus obtained was used in the feeding studies and in the preparation of crude Beldia bean extract (CBBE).

Experimental design, animals, and housing

Twenty young Wistar male rats (Rattus norvegicus albinus; specified pathogen-free), weighting 60–80 g, were initially acclimatized for 7 days and were used in this study. Rattus albinus was purchased from the Pasteur Institute of Tunis, Tunis, Tunisia, kept singly in sterile polypropylene cages on chopped aspen wood bedding, and maintained in a well-ventilated, thermostatically controlled room (25 ± 1.4°C) with 12 h light and 12 h dark (from 8 am to 8 pm) cycles. They were fed with a good quality pellet diet from Cereal Office, Tunis, Tunisia. The water was allowed ad libitum. The proximate composition of the daily feed offered to rats was determined by the Food Technology Service (STA), National Institute of Nutrition and Food Technology, Tunis, Tunisia, according to AOAC [8]. 100 g of dry rodent pellets (deprived of lectins) contained about 12.77% protein, 2.52% lipid, 69.18% carbohydrate, and 350 Kcal energy. Rats were handled daily by the same investigator and were fasted overnight (15 h) with free access to water before the experiment. Animals were monitored during the study for clinical signs, mortality, feed intake, body weight and body weight gain, and feces...
bacteriology. The rats were randomly assigned to two groups of ten rats each and were treated daily for 10 days as follows: Group 1 was daily administered with a single dose of a 300 mg rodent pellet flour (lectin-free), suspended in 3 ml distilled water rodent pellet flour suspension (RPPS), by oral intubations using gavage needle, and served as control. Group 2 was orally intubated (by gavage needle) with a 300 mg Beldia bean flour mixed with 3 ml distilled water Beldia bean flour suspension (BBFS) and served as experimental [4,9-11]. This research has the approval of the Ethics Committee for the Use of Laboratory Animals of the Faculty of Medicine of Tunis and followed the Council of International Organization of Medical Sciences ethical code for animal experimentation.

Collection of blood samples and organs

At the end of the test period (day 10), the rats were anesthetized by diethyl ether (PARAPHARM, Athens, Greece) before sacrifice by exsanguination. The abdomen and thorax were then opened immediately, and blood (ca. 0.5–1.0 ml) was collected through cardiac puncture using sterile syringes and needles, emptied into plain tubes, and allowed to clot for about 2 h (Fig 1). The clotted blood was thereafter centrifuged at 3500 rpm for 30 min to recover serum from clotted blood. Serum was separated with sterile syringes and needles and stored at ~70°C until used for hemagglutination assay (HA). After this, the small intestine, from the pylorus to the ileocecal junction, was removed, placed on a non-absorbent surface, and weighted. Finally, the small intestine (after opening and rinsing with ice-cold saline to remove its contents), spleen, liver, and thymus were promptly dissected out and weighted.

HA

In the present study, the sera collected from raw Beldia beans-fed rats were screened for lectin activity. The assay of hemagglutination was carried out in small glass tubes. At day 10 and after 3 h (i.e., time required for P. vulgaris lectins to reach the systemic circulation of animals) of gavage with BBFS, the sera were collected and serially diluted (e.g., 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024; 0.1 ml) with sterile saline (0.9% sodium chloride [NaCl]), and each dilution was tested for erythrocyte agglutination by mixing the serum extract with a 2% 0 human erythrocyte suspension (0.1 ml; Blood banks, Hospital Charles Nicole, Tunis, Tunisia). The degree of agglutination was monitored visually at room temperature (ca. 25°C) for 2 h, as the highest dilution of the extract showed visible agglutination. The content of each tube was also confirmed microscopically. Negative control was prepared using only phosphate-buffered saline and erythrocytes suspension. The positive control was prepared using commercially available purified PHAs (Sigma-Aldrich, Lesquin, France) and erythrocytes suspension. All experiments were conducted in triplets.

Bacteriological examination

The procedure of Ellinger et al. [12] was applied to collect fecal samples over 10 days to enumerate fecal coliforms and lactobacilli. The samples were collected, approximately at 8:30 am, fresh by gently squeezing the rectal area of the rat, into sterile 50 ml Falcon Tubes (Biosphère, Tunis, Tunisia) and then transported immediately to the bacteriology department, faculty of medicine of Tunis. A subsample (about 1 g) of the feces was placed in a 50 ml Falcon Tube and mixed with 9 ml of physiological saline water. The mixture was vortexed for 2~3 min until homogenous. Bacterial enumeration was carried out using selective growth media and growth conditions. Each fecal sample (1 g) was serially diluted 10-fold with 9 ml of sterilized saline water (SIPHAT, Tunis, Tunisia) dilution from 10^{-1} to 10^{-9}. From each dilution, 100 µl of suspension was plated out, in duplicate on the MRS agar (De Man-Rogosa & Sharpe Agar, BIOKAR Diagnostics, Allonne, France) and MacConkey agar (BIOKAR Diagnostics, Allonne, France) for the determination of the total cell count of Lactobacillus spp. and coliforms, respectively [5,11]. The MRS plates incubated aerobically at 37°C for 24 h. Petri dishes that had 30–300 colonies were counted. MacConkey agar plates were incubated anaerobically at 37°C for 48 h. Petri dishes that had 30–300 colonies were counted. MacConkey agar plates were incubated anaerobically at 37°C for 48 h.

Growth performance

Rats’ weights in all groups were recorded once per day since the beginning of treatments. The growth profile of the rats fed with the different diets is displayed in Fig. 3. No adverse effect of BBFS on experimental rats was detected. No statistically significant differences (p<0.05) between groups were observed during the experiment when data of body weight were analyzed. At day 1, mean body weight was 70.05±7.27 g in control rats (range 62–82.2 g) and 74.1±6.72 g in experimental rats (range 61.8–83 g). At the end of the study (day 10), the mean body weight recorded in control rats was 92.5±12.09 g (74–112 g) and in experimental rats was 96.6±9.99 g (74–111 g). The average daily gain (growth rate) at the end of 10 days was 2.2 g/day in control rats and 2.25 g/day in experimental rats, and no statistically significant differences (p>0.05) were noted. BBFS-treated animals appeared clinically normal, and no death was recorded.

Internal organ weights

The weights of the various organs of control and experimental rats are summarized in Table 1. As can be observed, no obvious differences in the weights of the internal organs were found. 10 days of treatments with BBFS had no significant effect on the small intestine, spleen, liver, and thymus weights of the investigated rats (Fig 4, p>0.05).

HA

The HA obtained with human blood Group O at various dilutions of serum extract samples collected from experimental rats are condensed in Table 2. None of the serum dilutions showed any specificity toward the red blood cells, whereas, these latter were clumped by the commercially available purified PHAs (Sigma-Aldrich, Lesquin, France) and the CBBE. Initially, these findings suggest the absence of P. vulgaris agglutinins in the systemic circulation of BBFS-fed rats. However, further investigation should be undertaken to confirm this presumption.

Bacteriological studies

The fecal materials collected from control and experimental rats were normal and solid–softer. The concentration of coliforms and lactobacilli in feces was monitored for up to 10 days (Fig. 5). Preliminary examination of Figs. 6 and 7 reveals that the numbers of coliforms and lactobacilli in the feces differ significantly among groups of rats treated with RPPS or BBFS (p<0.05). There was also a trend in the increase of numbers of these microorganisms over the 10-day experimental period. This instability observed for the experimental rats probably represents the abnormal development of the small intestinal microflora in these animals.

Counts of coliforms

Fig. 6 depicts the counts of the coliform populations in control and experimental rats. In feces collected from individual rats that received...
RPFS, the log_{10} CFU/g feces for coliform bacteria was 3.26±0.82 (range 2.1−4.54) at day 1 and 3.57±0.48 (range 3.01−4.23) at day 10. The rats fed by gavage 300 mg BBFS had levels of coliform bacteria 3.33±0.72 (range 2.18−4.36) and 4.49±0.54 log_{10} CFU/g feces (range 3.78−5.35), at days 1 and 10, respectively. As noticed, BBFS altered significantly the level of coliform in these animals (p<0.05).

Counts of lactobacilli
As can be seen in Fig. 7, compared to control rats, a significant change (p<0.05) in numbers of lactobacilli was found in rats gavaged with 300 mg BBFS. In control rats, when animals were orogastrically intubated with 300 mg RPFS, the mean fecal lactobacillus microbial counts at day 1 were 8.46±0.82 log_{10} CFU/g feces (range 7.09−9.81 log_{10} CFU/g feces) and at day 10 were 8.40±0.99 log_{10} CFU/g feces (range 7.01−9.75 log_{10} CFU/g feces). In experimental rats, when the diet was raw Beldia beans, the mean fecal lactobacillus microbial counts at day 1 were 8.34±1.51 log_{10} CFU/g feces (range 6.18−10.9 log_{10} CFU/g feces) and at day 10 were 10.95±0.62 log_{10} CFU/g feces (range 10.33−12.33 log_{10} CFU/g feces).

DISCUSSION
The current study investigated the impact of raw Beldia kidney beans on health parameters of rats such as feed intake, weight body, internal organs weights, and fecal microflora. In this experiment, no mortality or clinical signs of disease of any rats of both groups were recorded. There were no gross changes in food intake and body weight in the rats gavaged daily with 300 mg BBFS, in comparison with the rats received 300 mg RPFS over the course of 10 days. To give a scientific explanation of the different findings achieved using raw beldia beans, most of the toxicologists suggest that the manifestation of bean toxicity depends on many factors such as experimental animal species used for testing, animal age and sex, administration route, administration
levels, timing of treatment, variety of beans, overall diet composition, and environmental factors. The similar conclusion can be drawn for the addition of purified PHA in rat feed. Many experiments investigate the effect of kidney beans on rats’ performance yielded contradicting results. Some of the authors reported a toxic effect of raw beans on rat performance, while in other trials, different varieties of beans did not affect the feed intake and body weight gain in rats.

The effects of kidney beans on food intake of rats in this trial are in disagreement with large number of studies which have shown the effects of using purified PHA and extract or ground beans. For example, in a series of experiments conducted by Fantini et al. [13] to obtain information on the etiology of “kidney bean toxicosis,” it was found that administration of doses of *P. vulgaris* dry extract, devoid of any behavioral toxicity dose-dependently, decreased markedly diet consumption in rats. In other investigation done by Marzo et al. [14] looked at the effects of extruded kidney bean (*P. vulgaris* L. var. "Pinto") on growth and skeletal muscle nitrogen fractions in rats; it was discovered that the feed intake of animals fed with raw var. "Pinto" (94.7 g/100 g body weight) during 8 days was remarkably reduced compared to control (65.5 g/100 g body weight). In 1988, Lafont et al. [15] administered purified PHA for 9 days to growing rats at levels ranging from 0.0025% to 0.25% of food dry matter. They noticed that PHA reduced the food intake when offered at a level higher than 0.04%. Baintner et al. [16] tested orally administered PHAs (100 mg/kg body weight) for the suppression of voluntary food consumption in pre-fasted rats. PHA isolectins (*P. vulgaris*) were found to exert marked and significant effects. In an investigation in which growing rats were fed for 17 days with a diet containing purified lectins (0.25% of the dry matter) from *P. vulgaris*, the dietary lectins elicited mainly a food intake decrease and extensive alterations of the small intestinal mucosa [17].

It has long been known that the inclusion of raw kidney bean in the diet of experimental animals causes rapid weight loss and the animals may eventually die, and while after heat treatment, these seeds are no longer toxic [18]. The results herein agree with the finding of Penitza et al. [19] who showed that the gavage feeding with white kidney bean flour for 21 days had no effect on the body weight gains of growing rats. However, Jaffé and Lette [20] from the National Institute of Nutrition, Venezuela, mentioned that, in growth experiments, the rats fed the black or red kidney beans with high hemagglutinating activity lost weight rapidly and did not survive with this diet for more than 2 weeks. Herzog et al. [21] reported that the inclusion of 42 mg of PHA in the diet of rats during 10 days generated a significant loss in their body weights. Three intragastric administrations of 400 mg red kidney bean albumin/kg body weight (about 100 mg PHA/kg body weight) to neonatal suckling piglets at 10, 11, and 12 days of life resulted in less body weight gain as compared to controls. Six of the 11 lectin-treated and none of the 16 control pigs showed diarrhea symptoms during the treatment; for lectin-treated pigs, diarrhea stopped within 24 h in every case [22].

The details described by different authors frequently differ from each other in some aspects. One of the reasons is that the lectins from different varieties or cultivars of one plant species may vary considerably in chemical, physical, and biological aspects. Moreover, different isolectins may exist, and subunit aggregation or dissociation depends on the special experimental used. The information on sugar content is also often inconsistent.

Evidently, large differences in toxicity of lectins have been observed. Compared with the extremely toxic ricin, the LD₅₀ of toxic bean lectin is about 1/1000 times smaller. Some bean cultivars and lectins are known to be nontoxic [23,24]. This may be due to the lectin concentration in the seed or to the nature or type of lectins present.

In a relation to specificity, there are at least four clearly distinguishable groups of bean lectins [25]. The most abundant Type A will agglutinate both rabbit and trypanized cow blood cells. Type B is more active on rabbit than on cow blood. Type C is specific for cow blood, and Type D does not agglutinate either but will agglutinate pronase-treated hamster blood. When extracts of the different bean types were tested by injection into mice [25] or by feeding the ground seeds to rats [20], it was established that only the A- and C-type beans were toxic, whereas Types B and D were of low toxicity. Only the toxic beans showed mitogenic activity on human leukocytes [25,26].

An interesting observation revealed by the screening study conducted by Grant et al. [27] was the identification of a variety of *P. vulgaris*, "Pinto III," which was relatively nontoxic and had a very little reactivity toward most of the erythrocytes except pronase-treated rat cells. When this lectin was isolated and characterized [28], it was found to possess two subunits instead of the usual four subunit characteristics of the common...
P. vulgaris lectin. A slight immunochemical cross-reaction with the more common P. vulgaris lectin was noted. It had been noted earlier [4] that this lectin did not inflict the usual damage to the intestinal mucosa associated with the ingestion of lectins derived from toxic species of P. vulgaris. It would appear that the low level of hemagglutinating activity displayed toward most cells and the lack of toxicity of the "Pinto III" bean are a consequence of its lower valency (i.e., two subunits instead of four), which would weaken its affinity to cell surfaces.

Pueztai [29] presented evidence suggesting that lectin endocytosis by mucosal cells is a prior step to inducing nutritional toxicity and a whole series of systemic effects thereof, including insulin release [30], mobilization of liver glycogen [31], and immunological response [32] in rats. Atrophy of the thymus [33] and spleen [34] has also been reported when feeding diets with purified Phaseolus lectin or raw beans. Regarding the internal organs weights, the results of this trial showed no effect of Beldia ground beans on the weights of the small intestine, spleen, liver, and thymus compared to the control group. Thus, it can be advanced the following idea that the normal integrity of these organs, associated with a normal growth and normal feed consumption of animals, resulted in remained clinically healthy rats.

Obtained findings confirmed the fact exposed by many investigators that the gastrointestinal tract cannot be affected or reacted morphologically if the concentration of lectins fed to rats is low. For instance, the results obtained here agreed with Pereira et al. [19] who found that the administration by gavage of white bean flour (P. vulgaris) at 1 mg/g body weight in Wistar rats for 21 days did not alter the weights of the liver and pancreas. In the present investigation, the pancreas was not evaluated. Delgado et al. [35] also reported that the incorporation of beans into the diets of rats did not induce any changes in the liver weight of the rats. In contrast, De Oliveira et al. [36] stated that, in 10-day pair-feeding experiments, the inclusion of purified kidney bean lectins in egg albumin-based rat diets induced intestinal hypertrophy and hyperplasia, pancreatic enlargement, increased liver weight, thymus atrophy, and a loss of muscle mass. Linderoth et al. [37] indicated that the daily administration of PHA for 3 days through orogastric feeding (0.05 mg PHA/g body weight) increased gastrointestinal growth of rats. However, parental PHA exposure (0.05 PHA/g body weight), increased liver and spleen weight, and decreased thymus weight. Filip et al. [38] postulated in their paper that the administration of PHA (The stock solution of crude PHA in 0.9% NaCl, was (20% w/v) in water: 50 mg PHA/ml, 20 ml/kg body weight) through the stomach tube to rats for 11 days resulted in an increase in the weight of the small intestine (p<0.05) (control, 6.6 g, and experimental, 7.9 g). Reynoso-Camacho et al. [39] have evaluated, in vivo, the acute toxicity effect of a lectin extracted from tepary bean (Phaseolus acutifolius) on the development of the thymus, kidney, lung, and liver. These researchers reported that the most important anatomical changes produced by tepary lectin were in the thymus and the spleen of rats. The thymus presented a degeneration reflected in a significant decrease in weight. Therefore, they came by a conclusion that this atrophy may be linked to stress or to systemic immunological reactions produced by the lectin. The spleen was found to be greater in size when compared to control. Reynoso-Camacho et al. [39] explained that this significant increase in the weight of the spleen could be due to the enhanced lymphocyte stimulation required by the body’s defense system to counteract the intraperitoneal administered tepary lectin. Another possibility could be an increased mitogenic activity of the lectin toward splenocytes. No effects were found in this work on the size of the spleen, liver, and thymus organs that are responsible for the immunological response in rats. The overall response indicates that the immunological organs were normally functional in BBFS-treated rats.

Fig. 4: Physical appearance of some internal organs of Wistar rat gavaged with Beldia bean flour suspension at the dose of 300 mg/day for 10 days. (a) Small intestine; (b) Spleen; (c) Liver; (d) Thymus
bacterial groups (e.g., coliforms and lactobacilli) in the feces of rats. Very little literature is available regarding the effect of *P. vulgaris* lectins on the composition of fecal microflora. Somewhat more information is available on their effects on intestinal microflora. Several researchers have observed increased coliforms and lactobacilli when animals have been subjected to a dietary of kidney beans (*P. vulgaris*). Wilson et al. [5] reported that the inclusion in rat diets of raw kidney beans (*P. vulgaris* variety “Processor”) containing high levels of lectins resulted in a dramatic overgrowth of coliforms in the small intestine within 24~72 h of feeding, especially *Escherichia coli*. No overgrowth occurred when the beans fed to rats were of a low lectin variety “Pinto III.” Wilson et al. [5] hypothesized that kidney bean lectins may indirectly or directly enhance the virulence of coliform strains either through aggregation and elimination of competitive strains or by agglutination of certain strains of *E. coli* to one another and to the mucosal surfaces of the gut. Similar observations were obtained by Banwell et al. [7] using purified lectin. The authors reported the effect of PHA on the microflora of the small intestine. They noted that, compared with controls, PHA administration led to increased bacterial counts of both *E. coli* and lactobacilli in the small intestine. In other side, it increased as well the numbers of *E. coli*, lactic acid bacteria, and other *Enterobacteriaceae* in the feces.

Table 1: Effect of BBFS diet on the relative sizes of individual organs of Wistar rats

<table>
<thead>
<tr>
<th>Organ</th>
<th>Control rats (RPFS)</th>
<th>Experimental rats (BBFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small intestine</td>
<td>6.00±0.46</td>
<td>5.52±0.91†</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.2±0.04</td>
<td>0.20±0.04†</td>
</tr>
<tr>
<td>Liver</td>
<td>4.42±0.39</td>
<td>4.47±0.29†</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.20±0.02</td>
<td>0.19±0.04†</td>
</tr>
</tbody>
</table>

One group of rats was fed RPFS and a second group BBFS diet (300 mg/3 ml distilled water). After 10 days, the rats were sacrificed, various organs dissected out, and immediately weighted. The weights of organs are expressed in g/100 g body weight. The values are expressed as±SEM for 10 rats/group; †Significantly not different from control value (p>0.05; Student’s t-test);

RPFS: Rodent pellet flour suspension, BBFS: Beldia bean flour suspension.
SEM: Standard error mean

Previously, PHA has been reported to dose-dependently induce bacterial overgrowth in the intestine, which is associated with weight loss, malabsorption, and villus damage [2,6,40]. It has been suggested that PHA increases the turnover of epithelial cells, promoting the expression of mannosylated receptor glycans on the gut surface and thus leading to increased adhesion and subsequent proliferation of mannos-sensitive type 1-fimbriated *Escherichia coli*. Thus, this factor could aggravate the toxicity exerted by *P. vulgaris* lectins. The raw Beldia bean treatment in this trial had a significant effect on the investigated bacterial groups (e.g., coliforms and lactobacilli) in the feces of rats. Very little literature is available regarding the effect of *P. vulgaris* lectins on the composition of fecal microflora. Somewhat more information is available on their effects on intestinal microflora. Several researchers have observed increased coliforms and lactobacilli when animals have been subjected to a dietary of kidney beans (*P. vulgaris*). Wilson et al. [5] reported that the inclusion in rat diets of raw kidney beans (*P. vulgaris* variety “Processor”) containing high levels of lectins resulted in a dramatic overgrowth of coliforms in the small intestine within 24~72 h of feeding, especially *Escherichia coli*. No overgrowth occurred when the beans fed to rats were of a low lectin variety “Pinto III.” Wilson et al. [5] hypothesized that kidney bean lectins may indirectly or directly enhance the virulence of coliform strains either through aggregation and elimination of competitive strains or by agglutination of certain strains of *E. coli* to one another and to the mucosal surfaces of the gut. Similar observations were obtained by Banwell et al. [7] using purified lectin. The authors reported the effect of PHA on the microflora of the small intestine. They noted that, compared with controls, PHA caused proliferation of a consistent adherent microbial flora in the jejunum. The predominant bacteria identified were *E. coli*, *Streptococcus* sp., and *Lactobacillus*. Recent data pointed out that a gastric gavage of 33 mg of PHA/0.5 ml of NaCl twice daily for 2 days strongly affected the intestinal and fecal bacteria population structures of Wistar rats [11]. In one side, it was observed that PHA administration led to increased bacterial counts of both *E. coli* and lactobacilli in the small intestine. In other side, it increased as well the numbers of *E. coli*, lactic acid bacteria, and other *Enterobacteriaceae* in the feces.

Fig. 5: Fecal coliform and lactobacilli of Wistar rat gavaged with Beldia bean flour suspension at the dose of 300 mg/day for 10 days. (a) Coliform colonies growing on MacConkey agar. Incubated aerobically for 24 h at 37°C. (b) Light microscope view of coliform at 40× magnifications. (c) Lactobacilli colonies growing on MRS broth agar. Incubated anaerobically for 48 h at 37°C. (d) Light microscope view of lactobacilli at 40× magnifications.
Table 2: HA of human erythrocytes Group O with various serum extract dilutions of Wistar rats

<table>
<thead>
<tr>
<th>Erythrocytes</th>
<th>Purified PHA (Sigma-Aldrich) buffer (pH 7.4)</th>
<th>CBBE</th>
<th>Serum extract of control rats</th>
<th>Serum extract of experimental rats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dilutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/2/1</td>
</tr>
</tbody>
</table>

- No agglutination, +: Agglutination; Negative control: Phosphate-buffered saline (PBS; pH 7.4); Positive control: Purified PHA (Sigma-Aldrich, Lesquin, France); CBBE: Extract obtained after homogenization of 300 mg Beldia bean flour with 3 ml distilled water; centrifugation, and dilution. HA: Hemagglutination assay, PHA: Phytohemagglutinin, CBBE: Crude Beldia bean extract.

The numerous reports stated above clearly indicated that either the addition of raw beans in feed or the administration of purified PHA by gastric intubation to animals could alter the balance of intestinal microflora, by increasing the concentration of pathogenic bacteria such as E. coli, thereby creating a favorable environment for PHAs to manifest their potential toxic effects. The current bacteriological studies, using 300 mg of BBFS for 10 days, have shown a marked influence on the fecal microbial composition of rats. The general suggestion is that the bacterial populations and changes in microbial community are dependent on the dose of PHA fed to animals. Hence, it seems reasonable to assume that 300 mg Beldia flour beans (~2.76 mg PHA/day) [41] employed in this research were sufficient enough to evoke a bacteriological response in the rat small intestine.

CONCLUSION

It has been demonstrated here that Wistar rats can tolerate daily intakes of 300 mg of raw Beldia flour beans suspension, without affecting performance. There were no mortalities and no clinical signs considered to be of toxicological significance. Orogastric intubation studies clearly showed that the feed consumption and the body weight gain were similar in rats from control and experimental groups. The weights of the small intestine, spleen, liver, and thymus were not affected through oral administration of white beans. Feeding by gavage of raw beans diet produced significant increases in the counts of fecal coliform and lactobacilli populations. This provides strong evidence of an intraluminal overgrowth of bacteria developed in the small intestine following the ingestion of PHAs, which may partially account for the maldigestion and malabsorption of nutrients. Better understanding of the ecological changes may be achieved by further time-sequence studies of microbial colonization of the intestinal epithelium.

ACKNOWLEDGMENTS

This work was supported by “Korea-Tunisia joint research Program” grant funded by the Korea Government (ministry of science, ICT and future planning) in 2016 (NRF–2016K1A3A1A09919130).

CONFLICTS OF INTEREST

The authors declare that they do not have any conflict of interest.

REFERENCES

Fig. 6: Counts of fecal coliforms in control rats treated daily with 300 mg rodent pellet flour suspension and in experimental rats gavaged with 300 mg Beldia bean flour suspension for 10 consecutive days. Values represent the log10 colony-forming units/g feces expressed as the mean±SEM; *Significant differences between control and experimental rats were found using t-test (p<0.05).

Fig. 7: Counts of fecal lactobacilli in control rats treated daily with 300 mg rodent pellet flour suspension and in experimental rats gavaged with 300 mg Beldia bean flour suspension for 10 consecutive days. Values represent the log10 colony-forming units/g feces expressed as the mean±SEM; *Significant differences between control and experimental rats were found using t-test (p<0.05).

