ANTIBACTERIAL POTENTIAL OF METHANOLIC EXTRACT OF GYROCARPUS ASIATICUS WILLD

LAKSHMI KANTA KANTHAL*,1, AKALANKA DEY2, K. SATYAVATHI3, P. BHOJARAJU1.

1 Koringa College of Pharmacy, Korangi-533 461, Tallarevu (M), Andhra Pradesh, India., 2 Annamalai University, Department of Pharmacy, Annamalai Nagar, Tamil Nadu, India. Email: bidhakria@gmail.com

Received: 3 January 2014, Revised and Accepted: 31 January 2014

ABSTRACT

Objective: The present study was designed to evaluate the antibacterial activity of the methanolic extract of Gyrocarpus asiaticus Willd.

Methods: The Gyrocarpus asiaticus Willd extract under study has been screened for the antibacterial activity against with Staphylococcus aureus, Escherichia coli, Salmonella typhi, Salmonella paratyphi, pseudomonas mirebelis, Pseudomonas auriginosa and Klebsiella pneumoniai human pathogenic bacteria by disc diffusion method.

Results: Methanolic extract showed satisfactory results against almost all the organisms, among them against E.coli it showed highest zone of inhibition 18.5mm (0.4g/ml) with the minimum inhibitory concentration (MIC) value of 0.039 mg/ml and minimum bactericidal concentration (MBC) of 0.16 mg/ml. Other Gram negative pathogens like P. mirabelis, P. auriginosa shows good zone of inhibition 13.9 mm and 17 mm (0.4g/ml) with less minimum inhibitory concentration of 0.039 mg/ml and MBC values of 0.16 mg/ml for the above mention bacteria. But klebsiella sp was found to be resistant with no MIC, no MBC value and with a very less zone of inhibition of 7.5mm (0.4g/ml) when compared with the standards.

Conclusion: From the results, it is evident that Gyrocarpus asiaticus Willd is recommended as a plant of an antibacterial agent.

Keywords: Gyrocarpus asiaticus Willd, methanolic extract, antibacterial activity, MIC, MBC.

INTRODUCTION

Ayurveda and siddha medicines were alternative systems for medicine which were become popular in recent days [1]. History of medicine dates back practically to the existence of human civilization. The current accepted modern medicine or allopathy has gradually developed over the years by scientific and observational efforts of scientists [2].

Infectious diseases caused by bacteria, fungi, parasites and viruses are still a major threat to public health, despite the huge progress in human medicine. Their impact is particularly large in developing countries due to unavailability of medicines and the emergence of widespread drug resistance [3]. Natural products especially, those used in ethno medicine provide a major source of innovative therapeutic agents for various conditions including infectious diseases [4]. At present, nearly 30% or more of the modern pharmacological drugs are derived directly or indirectly from plants and their extracts dominate in homeopathic or ayurvedic medicines [5-8].

Gyrocarpus asiaticus Willd commonly known as Taniki or Nalla poliki [9] is a tree belonging to the family Hernandiaceae. Gyrocarpus asiaticus is one of the species in the genus Gyrocarpus with the class Magnolopside. The aim of this present study is to evaluate the antibacterial activity of the methanolic extract of Gyrocarpus asiaticus Willd.

MATERIALS AND METHODS

Collection of plant material

The Gyrocarpus asiaticus Willd plant (healthy and disease free plant samples) were collected from the nearby area of Tirunelveli District fields (Tamil Nadu) in December 2011, identified and authenticated by Dr. V. Chelladurai (Retired Research Officer-Botany, Central Council for Research in Ayurveda and Siddha, Govt. of India), Tirunelveli, Tamil Nadu, India. Herbarium of the plant, Gyrocarpus asiaticus Willd. was prepared and preserved in the Department of Pharmacognosy, Koringa College of Pharmacy, Korangi, East Godawari District, Andhra Pradesh, India.

Preparation of extracts

A portion of dried aerial parts (100 g) of Gyrocarpus asiaticus Willd was placed in a soxhlet apparatus. Extraction was performed with 800 ml of methanol for 48 h at a temperature not exceeding the boiling point of the solvent. Extract was filtered through a 45 μm filter. The resulting solution was concentrated in vacuum to dryness to give methanolic extract (8.5 g). The extract was stored in a refrigerator for further use.

Antibacterial activity

Antibacterial sensitivity testing using disc diffusion method

Circular disc of 6 mm diameter were made from the whatman no 1 filter paper. Discs were impregnated with equal volume (50 μl) of plant extract at four different concentrations (0.05 g/ml, 0.1g/ml, 0.2g/ml & 0.4g/ml). The discs were aseptically placed over plates of Muller Hinton agar (MHA, Difco) seeded with each of test pathogens, and the inoculum was adjusted to 0.5 Mc Farland turbidimetry [10]. The extract under study was screened for the antibacterial activity with several human pathogenic bacteria such as Staphylococcus aureus, Escherichia coli, Salmonella typhi, Salmonella paratyphi, Pseudomonas mirebelis, pseudomonas auriginosa, Klebsiella pneumoniai. The plates were incubated in an upright position at 37°C for 24 hours and the zone of inhibition was measured (in mm diameter). Inhibition zones with diameter less than 10 mm were considered as having low antibacterial activity. Diameters between 11 and 15 mm were considered moderately active, and these with >16mm were considered highly active. The clinical strains were also tested for their sensitivity against the standard antibiotics, ciprofloxacin (5 mcg) by the disk diffusion method.

Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)

The minimum inhibitory concentration (MIC) was determined by broth dilution method [11]. Twofold serial dilutions of the crude extract as well as the positive antibiotic control (Ciprofloxacin) were prepared in Mueller-Hinton broth [12]. A direct suspension of bacteria was prepared in 5 ml sterile distilled water from a 24-h-old suspension in Mueller-Hinton broth. The turbidity of the suspension
RESULTS AND DISCUSSION

Table 1: Antibacterial activity (Zone of inhibition) of methanolic extract of *Gyrocarpus asiaticus* Willd.

<table>
<thead>
<tr>
<th>Extract</th>
<th>Conc. (mg/ml)</th>
<th>Disc diffusion method (inhibition zone, mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanolic extract of G. asiaticus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S.A.</td>
<td>50</td>
<td>8.4</td>
</tr>
<tr>
<td>E.C.</td>
<td>100</td>
<td>9.2</td>
</tr>
<tr>
<td>S.T.</td>
<td>200</td>
<td>10.2</td>
</tr>
<tr>
<td>P.A.</td>
<td>400</td>
<td>11.4</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>5 µg/ml</td>
<td>24.0</td>
</tr>
</tbody>
</table>

![Fig. 1: Antibacterial activity of methanol extract of *Gyrocarpus asiaticus* Willd.](image)

The methanolic extract of *Gyrocarpus asiaticus* tested for antibacterial activity on seven human pathogenic bacteria was presented on (Table 1 and Figure 1). The result showed that the antibacterial activity of the plant was increased with increasing the concentration of crude extracts. The extract showed prominent activity on almost all the pathogens specially on Gram negative *E. coli*, *P. aeruginosa*, *P. mirebelis*, *S. paratyphi* but only *klebsiella sp* appears to be resistance with less zone of inhibition. The methanolic extract of the plant showed highest activity against *E. coli* (18.5 mm for 0.4 µg/ml) and *P. aeruginosa* (17 mm for 0.4 µg/ml) but on the other hand *klebsiella sp* which is considered as resistant showed only 7.5 mm inhibition zone at same concentration as above.

CONCLUSION

Gyrocarpus asiaticus represents a potent antimicrobial system for the development of natural drugs. Though in a crude form, the plant extracts have displayed broad spectrum activity towards the microorganisms. From these results, it could be concluded that "*Gyrocarpus asiaticus* Willd" contain antibacterial activity.

ACKNOWLEDGEMENTS

The authors are thankful to the Management of Koringa College of Pharmacy, Korangi, Andhra Pradesh, India for availing all the facilities.

Table 4: Minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) of methanolic extract of *Gyrocarpus asiaticus* Willd.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>G. asiaticus methanolic extract</th>
<th>+ve control Cf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC (mg/ml)</td>
<td>MBC (mg/ml)</td>
</tr>
<tr>
<td></td>
<td>0.320</td>
<td>0.625</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>0.16</td>
</tr>
<tr>
<td>E.C.</td>
<td>0.039</td>
<td>0.16</td>
</tr>
<tr>
<td>S.T.</td>
<td>0.625</td>
<td>0.64</td>
</tr>
<tr>
<td>S.P.</td>
<td>0.156</td>
<td>0.32</td>
</tr>
<tr>
<td>P.M.</td>
<td>0.039</td>
<td>0.16</td>
</tr>
<tr>
<td>P.A.</td>
<td>0.039</td>
<td>0.16</td>
</tr>
<tr>
<td>K.P.</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

REFERENCES

