IN VITRO ANTIBACTERIAL ACTIVITY OF ESSENTIAL PLANT OILS AGAINST BIOFILM FORMING METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS

THAMBIDURAI PUNITHA,1 KANNAIYAN MOORTHY,2 PONNUSAMY VIJAYALAKSHMI,1 RAJA VINODHINI,1 SELVAM SARANYA,1 MURUGESAN BHUVANESHWARI,1 CHINNASAMY KANIMOOZHI.1

1Department of Microbiology, Vivekanandha College of Arts and Sciences for Women (Autonomous), Elayampalayam - 637 205, Tiruchengode, Namakkal, Tamil Nadu, India. 2Professor in Biology, B062-Department of Biology, Wolaita Sodo University, Wolaita Sodo Zone, Post Box No.: 138, Ethiopia, Eastern frica Email: punithat79@gmail.com

ABSTRACT

An alarming increase in biofilm forming methicillin-resistant Staphylococcus aureus (MRSA) possesses a serious problem in hospital environment demands a renewed effort to seek agents from natural system that are effective against pathogenic organisms resistant to chemotherapy. In the present study, the distribution of biofilm forming MRSA and the antibacterial activity of essential oils (Eucalyptus, Mint, Turpentine, Neem and Amla) was studied in 58 strains of S. aureus isolated from pus samples. Out of 58 clinical samples 22 S. aureus were found to be methicillin-resistant and showed a dry black crystalline morphology indicating strong biofilm production and they were screened for the antibacterial activity of five different essential oils by using agar well diffusion method. The results from the agar well diffusion method showed that 4 essential oils could inhibit the growth of biofilm forming S. aureus isolates. Among those turpentine oil had strong inhibitory effects with a zone of inhibition ranging from 16.8 ± 1.77 mm to 32.0 ±2.12 mm. Eucalyptus oil showed moderate antibacterial activity against the tested isolates with the exception of amla oil where there were no reports of inhibition. It is known that essential oils are composed of numerous different chemical compounds and their antimicrobial activity might be attributed to several different mechanisms, which could explain the variations in their mode of action. However, more studies are required to find the compounds of essential oils responsible for their antimicrobial activity, since little is known about essential oils and their medicinal property.

Keywords: Staphylococcus aureus, MRSA, Biofilm, Antibacterial activity, RAPD

INTRODUCTION

Antibiotic resistance is an important threat to public health on a global scale as it reduces the effectiveness of treatment and increases morbidity, mortality and health care costs [1]. Evolution of highly resistant bacterial strain has compromised the use of new generations of antibiotics [2]. Antibiotic resistance is due to an inherent ability of microorganisms to form surface-attached communities of cells within the extracellular polymeric matrix called biofilms [3]. Microbial biofilms pose a challenge in clinical and industrial settings where the need for sterility is paramount. In response to certain environmental cues, bacteria living in biofilms are capable of using active mechanisms to leave biofilms and return to the planktonic (free-living) state in which sensitivity to antimicrobials is regained [4-6]. Moreover, bacteria within biofilm grow slowly and adopt a phenotype that confers an intrinsic resistance to many antibiotics classes [7] including the β-lactams [8]. The challenge presented by biofilm infections is the remarkable resistance to both host immune responses and available chemotherapies [9,10] and estimates suggest that as many as 80% of chronic bacterial infections are biofilm-associated [11]. Consequently, biofilm-associated infections are recalcitrant to antimicrobial therapy and often require surgical intervention to debride infected tissues and/or remove colonized implants.

Chronic nosocomial infections by gram-positive bacteria have become more prevalent in recent years with the increased use of prosthetic biomedical implants. Staphylococcal infections are a major source of patient morbidity and implant failure [12]. Staphylococcus aureus causes potentially life threatening nosocomial and community–acquired infections, such as osteomyelitis and endocarditis [13]. The opportunistic pathogen S. aureus can form biofilms on many host tissues and implanted medical devices often causing chronic infections [14-17]. The resistance of S. aureus is associated with its ability to produce toxins and other extracellular polysaccharides like biofilms. In recent years, multidrug resistant strains have developed. Methicillin-resistant S. aureus (MRSA) is a special strain that is resistant to the antibacterial activity of methicillin and other related antibiotics of the penicillin class. Although, MRSA has traditionally been seen as hospital-associated infections, community–acquired MRSA strains have appeared in recent years [18]. Several new strains of MRSA have been found showing antibiotic resistance even to Vancomycin and Teicoplanin; these new evolutions of the MRSA bacteria are called Vancomycin Intermediate- resistant S. aureus (VISA) [19]. Community-acquired MRSA (multidrug resistant S. aureus) infections in the absence of identified risk factors have been reported. Many outbreaks of infections due to MRSA have occurred and it has now become endemic in several centres in the world [20]. Therefore, the current situation of the susceptibility patterns of local strains is essential for the judicious use of alternative drugs for the treatment of infectious diseases from medicinal plants [21].

Essential oils of medicinal plants have been used for hundreds of years of natural medicines to combat a multitude of pathogens, including bacteria, fungi and viruses [22]. Several essential oils confer antimicrobial activity by damaging the cell wall and membrane, leading to cell lysis, leakage of cell contents and inhibition of proton motile force [23]. In addition, there is evidence that they effectively kill bacteria without promoting the acquisition of resistance [24, 25] and they possess multiple antimicrobial activity i.e., antibacterial [26], antifungal [27], antiviral, antitussive and antioxidant properties [28, 29] against all pathogens [30]. Finally, many essential oils are relatively easy to obtain, have low mammalian toxicity and degrade quickly in water and soil, making them relatively environmentally friendly [31]. For these reasons research is ongoing for new antimicrobial agents, either by the design and synthesis of new agents or through the search of natural plant oils for as yet undiscovered antimicrobial agents [32].
MATERIALS AND METHODS

Collection of essential oils

Five essential oils namely Eucalyptus, Mint, Turpentine, Neem and Amla oils were obtained from the herbal store of Salem district. These oils were selected based on the literature survey and their use in traditional medicine system.

Sample collection

Seventy eight clinical pus swabs were collected from hospitalized patients of various private hospitals in and around Namakkal area from January to February, 2011 using sterile swab saturated with Brain Heart Infusion broth. All the specimens were transported immediately to the laboratory and cultured within 3 to 4 h of collection.

Isolation and characterization of bacteria

The swab specimens were inoculated on various ordinary media: blood agar base, nutrient agar, mackonkey agar (Hi Media, India) to obtain discrete colonies. The plates were incubated at 37°C for 24 h under aerobic conditions. After 24 h of incubation, the culture plates were examined for recording the appearance, size, colour and morphology of the colonies. Gram stain reaction, catalase test and coagulase test, growth on differential and selective media such as mannitol salt agar, triple sugar iron agar, (Hi Media, India) and other biochemical tests were carried out according to standard techniques [33, 34].

Isolates that are gram positive, cocci, catalase positive, coagulase positive and form yellow colonies on mannitol salt agar were considered Staphylococcus aureus in this study.

Antibiotic Susceptibility test

Susceptibility to antimicrobial agents was determined by Disc Diffusion method of Kirby Bauer on Muller-Hinton agar as described by the Clinical and Laboratory Standard Institute (CLSI). The antibiotic discs used (Hi-Media) were Ampicillin, Penicilin-G, Streptomycin, Oxacillin, Amikacin, Gentamicin, Tetracycline, Chloramphenicol, Methicillin and Vancomycin.

Biofilm Production assay

Congo red agar method (CRA)

Congo red agar method [35] had described an alternative method of screening biofilm formation by Staphylococcal isolates; which requires the use of a specially prepared solid medium-brain heart infusion broth (BHI) supplemented with 5% sucrose and Congo red. The medium was composed of BHI (37 g/L), sucrose (50 g/L), agar no.1 (10 g/L) and Congo red stain (0.8 g/L). Congo red was prepared as concentrated aqueous solution and autoclaved at 121°C for 15 minutes, separately from other medium constituents and was then added when the agar had cooled to 55°C. Plates were inoculated and incubated aerobically for 24 to 48 hours at 37°C.

Positive result was indicated by black colonies with the absence of dry crystalline morphology. Weak slime producers usually remained pink, though occasional darkening at the centres of colonies was observed. A darkening of the colonies with the absence of a dry crystalline colony morphology indicated an indeterminate result. The experiment was performed in triplicates.

Antibacterial screening

Agar well diffusion method

The antibacterial activities of the five essential oils were tested by agar well diffusion method [36]. The culture plates were prepared by pouring 20 ml of sterile Hi-sensitivity (Himedia- M 486) agar medium. The depth of the medium was approximately 4 mm. Three to four similar colonies of pure cultures were inoculated with tryptone soy broth (Himedia- M 323), further, it was incubated at 37°C for 2-8 h and inoculum size was adjusted to yield uniform suspension containing 10^5-10^6 cells/ml (McFarland’s standard). The agar surface of the plates was swabbed in three directions, turning the plates at 60˚ between each swabbing. Confluent growth is desirable for accurate results. Using a 6 mm sterile cork borer, wells were prepared on the swabbed hi-sensitivity agar plates. Five different concentrations of oils were prepared (3, 6, 9, 12 and 15µl) and loaded in appropriate wells. Allowed the plates to stand at refrigerator for 30 min (Pre-diffusion time). The plates were incubated at 37°C for 16-18 h during which the activity was evidenced by the presence of zones of inhibition surrounding the well. Each experiment was done in triplicate.

Random Amplified Polymorphic DNA Technique

RAPD assays were determined according to Randa (2006) protocol with some modification. The primers was obtained from Sigma, India and used in the PCR comprised primer OPA13 (5’- CAGCACCCAC-3’). RAPD-PCR was carried out in a 20 µl reaction mixture containing 0.5µl of 10 pmol primer, 0.5 µl of Taq DNA polymerase (con. 30/µl), 2 µl of 10X PCR buffer, 1 µl of DNA template, 1 µl of 25 mM of each deoxynucleotide triphosphate and 15 µl of nuclease-free water. Amplification conditions consisted of denaturation at 94°C for 60 sec and 35 cycles of denaturation at 94°C for 35 sec, annealing at 33°C for 30 sec, extension at 72°C for 65 sec and final extension at 72°C for 5 min. PCR products were detected in 1% agarose gel. 1 Kb DNA marker was included as molecular size marker. Gels were visualized by staining with EtBr and bands patterns were observed with UV illumination.

RESULT

Among the total of 77 pus swabs collected 58 strains of S. aureus were isolated from various pus samples including burns, accidental wounds, and surgical wounds respectively.

Antibiotic Susceptibility test

Antibiotic susceptibility assays revealed that among the 58 isolates, 14 were susceptible to all antibiotics used in this study. All the isolates (100%) were also susceptible to Vancomycin. Higher resistance was observed to Ampicillin and Penicillin-G (75.86%), Streptomycin (67.24%), Oxacillin (65.51%), Amikacin, Gentamicin and Tetracycline (62.06%) and Chloramphenicol (56.89%). Twenty two isolates of S. aureus were found to be methicillin-resistant, while the remaining (36) isolates were methicillin-susceptible. Among the isolates studied high resistance was observed against the group of β-lactam antibiotics.

Biofilm production assay

Congo red agar method (CRA)

Biofilm production by clinical isolates of S. aureus is detected by Congo red agar method. Out of 58 clinical isolates of S. aureus 22 (37.93%) isolates showed a dry black crystalline morphology indicating strong biofilm production. Twenty eight (48.27%) isolates showed moderate biofilm formation with red or black colonies with or without dry crystalline morphology; eight (13.79%) isolates were weak producers with pink colour colonies which is difficult to differentiate from biofilm negative isolates in the Congo red agar method.

Table 1: Biofilm production by clinical isolates of Staphylococcus aureus

<table>
<thead>
<tr>
<th>Slime test</th>
<th>Congo Red Agar Method</th>
<th>Biofilm (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong biofilm</td>
<td>22</td>
<td>37.93</td>
</tr>
<tr>
<td>Moderate biofilm</td>
<td>28</td>
<td>48.27</td>
</tr>
<tr>
<td>Weak/non biofilm</td>
<td>8</td>
<td>13.79</td>
</tr>
</tbody>
</table>
Antibacterial activity of essential oils against Staphylococcus aureus

Table 2 Antibacterial activity of Essential oils against Staphylococcus aureus

<table>
<thead>
<tr>
<th>Name of the Isolates Staphylococcus aureus (Sa)</th>
<th>Zone of Inhibition in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eucalyptus oil</td>
</tr>
<tr>
<td>Sa 01</td>
<td>14.6 ± 1.66</td>
</tr>
<tr>
<td>Sa 02</td>
<td>14.0 ± 1.84</td>
</tr>
<tr>
<td>Sa 03</td>
<td>21.0 ± 1.14</td>
</tr>
<tr>
<td>Sa 04</td>
<td>17.0 ± 1.41</td>
</tr>
<tr>
<td>Sa 05</td>
<td>22.4 ± 1.77</td>
</tr>
<tr>
<td>Sa 06</td>
<td>23.8 ± 1.77</td>
</tr>
<tr>
<td>Sa 07</td>
<td>21.6 ± 2.20</td>
</tr>
<tr>
<td>Sa 08</td>
<td>20.4 ± 2.06</td>
</tr>
<tr>
<td>Sa 09</td>
<td>16.6 ± 1.63</td>
</tr>
<tr>
<td>Sa 10</td>
<td>-</td>
</tr>
<tr>
<td>Sa 11</td>
<td>15.0 ± 2.12</td>
</tr>
<tr>
<td>Sa 12</td>
<td>12.8 ± 1.56</td>
</tr>
<tr>
<td>Sa 13</td>
<td>17.2 ± 1.77</td>
</tr>
<tr>
<td>Sa 14</td>
<td>12.2 ± 1.77</td>
</tr>
<tr>
<td>Sa 15</td>
<td>19.0 ± 1.41</td>
</tr>
<tr>
<td>Sa 16</td>
<td>26.2 ± 1.93</td>
</tr>
<tr>
<td>Sa 17</td>
<td>13.8 ± 2.13</td>
</tr>
<tr>
<td>Sa 18</td>
<td>18.4 ± 1.43</td>
</tr>
<tr>
<td>Sa 19</td>
<td>15.6 ± 1.63</td>
</tr>
<tr>
<td>Sa 20</td>
<td>18.0 ± 1.70</td>
</tr>
<tr>
<td>Sa 21</td>
<td>14.0 ± 1.84</td>
</tr>
<tr>
<td>Sa 22</td>
<td>-</td>
</tr>
</tbody>
</table>

Out of 58 clinical samples of S. aureus 22 isolates of methicillin resistant and biofilm producing strains were screened for the antibacterial activity of essential oils. Agar well diffusion is one of the most common assays used in the evaluation of antibacterial activity of essential oils. In vitro antibacterial properties of the essential oils of Eucalyptus, Mint, Turpentine, Neem and Amla against 22 biofilm forming Methicillin-resistant S. aureus (MRSA) exposed at 5 different concentrations were studied. Antibacterial activity of essential oils ranged from no inhibition to complete inhibition against the biofilm forming MRSA isolates. The essential oil of turpentine was effective against all the tested isolates, the mean zone of inhibition ranged from 16.8 ± 1.77 mm to 32.0 ± 2.12 mm and this oil shown considerable antibacterial activity against isolates of Sa (S. aureus) 16 (32.0 ± 2.12 mm), Sa 06 (30.8 ± 2.26 mm), Sa 05 (29.4 ± 2.20 mm), Sa 07 (29.2 ± 2.35 mm), Sa 08 (27.8 ± 2.08 mm), Sa 03 (26.0 ± 1.84 mm) and Sa 02 (25.0 ± 1.84 mm). Neem and mint oil invariably inhibits all isolates of biofilm forming MRSA; the neem oil was effective against Sa 16 (30.7 ± 1.26 mm), Sa 06 (30.2 ± 1.80 mm), Sa 05 (28.0 ± 1.51 mm), Sa 07 (27.6 ± 2.63), Sa 08 (27.0 ± 1.64 mm), and Sa 12 (24.0 ± 1.58 mm) whereas the mint oil was effective against Sa 06 (31.4 ± 2.06 mm), Sa 16 (29.8 ± 2.26 mm), Sa 05 (29.0 ± 1.70 mm), Sa 08 (27.4 ± 2.20 mm), Sa 07 (26.2 ± 1.88 mm) and Sa 18 (24.2 ± 1.65 mm). Eucalyptus oil shown moderate antibacterial activity against all tested isolates and the average zones of inhibition ranged from 12.2 ± 1.77 mm to 26.2 ± 1.93 mm. Isolates of Sa 16 (26.2 ± 1.93 mm), Sa 06 (23.8 ± 1.77 mm), Sa 05 (22.4 ± 1.77 mm), Sa 07 (21.6 ± 2.20 mm) and Sa 08 (20.4 ± 2.06 mm) were inhibited considerably by eucalyptus oil. Antibacterial activity by agar well diffusion method showed that turpentine oil was most active against biofilm forming MRSA followed by eucalyptus, mint and neem. The oils at all concentrations showed potent inhibitory activity against the tested S. aureus with the exception of amla oil where there were no reports of inhibition. On one hand, the growths of tested bacteria in high concentrations of oils were highly inhibited. On the other hand, at low concentrations, a very limited inhibitory effect was observed on the growth of microorganisms in comparison with those witnessed.

Random Amplified Polymorphic DNA Technique

Among the 22 isolates five biofilm forming MRSA strains (Sa 05, Sa 06, Sa 07, Sa 08 and Sa 16) showing higher inhibitory activity against five oils were selected to determine the genetic diversity among S. aureus by PCR amplification. Random primers are subjected to optimized conditions for PCR, were applied to all strains. This primer exhibited discriminatory band patterns among the S. aureus. The amplified fragments ranging from 100bp to 1200bp. Out of the 5 clinical samples single isolate of S. aureus produced number of bands. In our observation 5 types of RAPD patterns were observed.

Two isolates showed only single band (lane 4 and 5). Single common band were observed in all the isolates. The molecular weights of the common bands are nearly 500bp. Single isolates (lane 2) has highest molecular weight bands were observed and that range was 1200bp. This RAPD analysis was clearly indicating the diversity was present in all isolates of S. aureus.

DISCUSSION

Staphylococcus aureus is a medically important organism associated with a variety of diseases; some strains can cause chronic infections and gain increased resistance to antimicrobial agents through biofilm formation [37, 38]. Biofilm and multidrug resistance have been identified as virulence factors of S. aureus [39]. MRSA represents a major challenge to hospitals in all countries due to the emergence and spread of isolates with decreased susceptibilities to several antibiotic classes, in...
addition to methicillin and the other members of the β-lactam family [42]. The result of the present study revealed that a significant number of isolates showed resistance to antibiotics (Penicillin-G, Ampicillin, Streptomycin, Oxacillin, Amikacin, Gentamicin, etc.) that are frequently used. The occurrence of isolates resistant to Streptomycin is frequent than the other antibiotics [43]. The resistant proportion was higher in MRSA than in MSSA isolates for various antibiotics as the MRSA generally express resistance to multi drugs [43, 44]. Biofilm infections are a major medical problem with S. aureus and coagulase-negative staphylococci, as the leading species responsible for chronic polym- associated infections [46, 47]. Researchers have investigated the strategies employed by microorganisms to produce biofilms and to understand the pathogenesis. They discovered that biofilm producing bacteria secrete certain chemicals that protect them from disinfectants and antimicrobials and phagocytic host immune systems [38]. Several conventional methods of detecting biofilm production have been established, such as the standard Tube Method [48], plate method [35, 49], and coverslip assay [49] etc. Using the Congo red agar (CRA) plate method for testing biofilms production, only 22 (27.93%) showed the black dry crystal formation. Biofilm production has been reported in strains of all Staphylococcus spp. associated with the infection of biomedical devices [50]. The CRA plate method is not recommended as a medium for biofilm production in S aureus species as researchers have only recently found that PJA/PNAG (polysaccharide intracellular adhesions/poly N-acetyl glucosamine) have little input in the biofilm matrix of S aureus and cannot detected by the CRA method [51]. Similar results have been reported by other authors [49, 52]. These reports suggest that CRA screening cannot be recommended to detect biofilm formation for S aureus isolates.

The activity of natural products, especially essential oils (EO), against microorganisms has been recently confirmed by several studies focusing on antimicrobial activity of EO against planktonic cells. However, bacteria growing in biofilms exhibit a specific phenotype and are often, but not always, more resistant to antimicrobial agents than their planktonic counter parts [53, 54]. Thus it is important to search for natural products that have antibiofilm properties and antimicrobial activity against wound pathogens [55]. In this study, the essential oils of Eucalyptus, Mint, Turpentine, Neem and Anula was evaluated for antibacterial activity against 22 biofilm forming Methicillin-resistant S aureus (MRSA). The result shown that the essential oil possesses some broad-spectrum antibacterial properties, contents of oils is sufficient to inhibit the growth of more than 90% of the tested S. aureus. Antibacterial activity of turpentine oil was most active against biofilm forming MRSA followed by neem oil and eucalyptus. The zone of inhibition of turpentine oil against S. aureus isolates ranged from 16.8 ± 1.77 mm to 32.0 ±2.12 mm. The previous studies accounted that neem oil showed better effectiveness of essential oils against planktonic S. aureus isolates in the range of 11-17 mm of zone of inhibition [46, 74]. It may also happen due to hydrophilic barrier against any incoming bio-molecule in the biofilm matrix. It may also happen due to hydrophilic barrier against any incoming bio-molecule. Biofilms are known to be not only difficult to treat but also to prevent the spread of drug resistant strains [81].

In the present study, essential oils have shown nearly equal antimicrobial effects on both gram-positive and gram-negative bacteria. Turpentine oil was found to be the most effective. However, inhibition zone diameters obtained in well diffusion assays have shown better effectiveness of essential oils against biofilm forming methicillin-resistant S. aureus isolates. It may be due to volatile actions of essential oils and due to absence of lipo-polyaccharide layer in gram-positive bacteria that might function as an effective barrier against any incoming bio-molecule [67-74]. There might be another possibility that essential oils may successfully inhibit microbial respiration and increase the plasma membrane permeability, which results in to death of bacterial cells after massive ion leakage [75, 76]. It may also happen due to hydrophilic barrier of bacterial cell wall. In the present study, almost all essential oils tested have shown strong antibacterial potential against S. aureus. It is known that essential oils are composed of numerous different chemical compounds and their antimicrobial activity might be attributed to several different mechanisms, which could explain the variations in their mode of action [77]. However, more studies are required to find the compounds of essential oils responsible for their antimicrobial activity, since little is known about essential oils and their medicinal property.

ACKNOWLEDGEMENTS

The authors are thankful to Prof. Dr. M. KARUNANITHI, Chairman and Secretary, Vivekananda Educational Institutions, Elayampalam, and Mr. R.T. SURESHKUMAR, Head Department of Microbiology, Vivekananda College of Arts and Sciences for Women, Elayampalam, Tiruchengode, Namakkal District, Tamil Nadu for providing all the facilities for our research work.

CONFLICT OF INTEREST STATEMENT

We declare that we have no conflict of interest.

REFERENCES

2. Levy SB. The antibiotic paradox: How the Misuse of antibiotics destroys their curative powers. Perseus Publishing; Cambridge, MA; 2002

64. Santos FA, Rao VS. Anti-inflammatory and antinoceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res 2000;14 :240-244.