

ISSN: 2321-6832

Original Article

USE OF AZOLLA BIOFERTILIZER IN POT CULTURE STUDIES WITH PADDY CROP ORYZA SATIVA

MAHALINGAM.P.U, MUNIAPPAN.K*, ARUMUGAM.N, SENTHIL MURUGAN.G

Department of Biology, Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul District, Tamil Nadu Email: munistudy@gmail.com

Received: 24 July 2014, Revised and Accepted: 14 August 2014

ABSTRACT

The pure cultures of *Azolla* species were mass multiplied and used as potential biofertilizer to study the growth performance of paddy (BPT paddy variety) in pot culture. Pots were prepared with different compositions of Red soil, Vermicompost, NPK and *Azolla* cultures. Healthy seeds of BPT paddy variety were collected from Raj Agro Form, Dindigul and showed in pots with thirteen treatments and watered regularly. The various growth parameters such as percentage of Seed germination, Shoot length, Root length, No of leaflets, No of root branches, Wet and Dry weight of whole crops of different treatment were observed periodically for 21 d. The total chlorophyll and carotenoid contents were estimated in all treatments including control. The rapid growth rate of paddy crop was recorded between 15 to 21 d of pot cultures due to the influence of *Azolla* biofertilizers. This study will attract the farmers to use *Azolla* biofertilizers for paddy cultivation.

Keywords: Azolla, BPT Paddy, Oryza sativa, Biofertilizer. Nitrogen fixation

INTRODUCTION

The quick multiplication rate and rapid decomposing capacity of Azolla has become an important factor to used as green manure cum biofertilizer in paddy field [1]. This free-floating freshwater fern, fixes atmospheric nitrogen through the symbiotic association with Anabaena azollae that lives inside the dorsal lobes of Azolla leaves, potentially supplying a substantial amount of N2 to the paddy crop [2]. The genus of Azolla species is very sensitive to lack of water in aquatic ecosystems such as stagnant waters, ponds, ditches, canals or paddy fields. These areas may be seasonally covered by a mat of Azolla associated with other free-floating crops species such as Lemna minor [3]. Application of Azolla not only increases the growth and yield of paddy crops but also improves the soil fertility [4]. The mass cultivation of Azolla species is achieved in fresh water under strictly controlled conditions. The fresh water system is wildly available in populated countries like India; large scale production of Azolla is feasible in tropical conditions in developing countries, where land costs and labor are comparatively cheaper. The mass cultivation of Azolla in dairy effluent with various combinations of cow dung, whey water and tap water as low cost medium was reported [5]. Hence, utilization of waste water from dairy, industry also recommendable for mass cultivation of Azolla. This aquatic fern can be exploited as a potential source of bioferitilizer to increase the production of paddy variety [6]. Hence; Preliminary studies were carried out to evaluate the growth performance of paddy crop using Azolla biofertilizer.

MATERIALS AND METHOD

Mass multiplication of Azolla species

The large cement tub was filled with 2 Kg of fine red soil. Slurry was made by mixing one Kg of cow dung, 15 gm of super phosphate in 5 liters of water. Only live and healthy culture of half kg *Azolla* was inoculated in the prepared tub bed. The optimum temperature 27° C and pH 5.0 to 5.7 is maintained for mass multiplication [7].

Population estimation of Azolla species

Pure cultures of *Azolla* species were procured from TNAU, Coimbatore. The Population of *Azolla* was estimated by direct count method. Such as 50 gms wet wt of the culture was taken and spread over the marked 1 sq. cm area of the clean grid petriplate. Then it was observed under 50 lux white light source. The number of individual *Azolla* were counted per grid field and the populations were estimated by using Conn's direct observation method [8].

Pot culture studies with paddy crop using Azolla biofertilizer

Pots were prepared with thirteen different treatment using red soil, vermicompost NPK and *Azolla* cultures. Healthy seeds of BPT paddy variety were collected from Raj Agro Farm dindigul and sowed in pots and watered regularly. The various growth parameters such as percentage of seed germination, Shoot length, Root length, No of leaflets, No of branches, Wet and Dry weight of whole crops of different treatment were observed periodically for 21 d.

Analysis of Seed Germination Percentage of paddy crop

The germination percentage of paddy seed in various treatments were calculated using the following Formula [9].

Germination (%) = Number of seeds germination / Total number of seeds X 100

Analysis of Shoot Length and Root Length of the paddy crop

The shoot length of *Azolla* species treated paddy crops were measured in all 30 d treated crops. The average shoot length is expressed in centimeter for each treatment and in control. Simultaneously the length of root was measured from a fixed point below the surface of the soil to the end of the root [10].

Analysis of Fresh and Dry Weight of the paddy Crop

The paddy crop from pots of each treatment were carefully uprooted on 15d & 21d, washed with water and weighted the fresh weight using weighing balance. Followed by the whole Crops were dried in hot air oven at 50°C by gradually increasing the temperature up to 120°C for every two hrs for 24hrs. The dry weight of whole crop was weighed accurately and the results were expressed in grams [11].

Estimation of Chlorophyll and Carotenoid Contents in Paddy Crop

The chlorophyll & carotenoid contents of paddy crop grown in various treatments were estimated by standard method (Arnon, 1949). One gram of leaf from paddy crop was homogenized in 20 ml acetone (80%) and centrifuged at 10,000 rpm for 5 min. The contents of total chlorophyll (T-Chl), chlorophyll a (Chl-a), chlorophyll b (Chl-b) and carotenoid in the supernatant were determined by spectrophotometrically at OD of 645, 662 and 470

nm. The chlorophyll and carotenoid contents were calculated using the following formulae [12]:

Chlorophyll a (mg/g fw) = 11.75*A662-2.35*A645

Chlorophyll b (mg/g fw) = 18.61*A645-3.96*A662

Total chlorophyll (mg/g fw) = Chlorophyll a + b

Carotenoids (µmole g fw) =1000 X A470 - 2.29*chlorophyll (a) – 81.4* chlorophyll (b) / 227.

Statistical Analysis of Selected Parameters

Statistical analysis of the data was carried out by using Prism Software (PV6). Mean standard deviation (SD) and percent variation was calculated. 'One Way Analysis of Variance' (ANOVA) was tested in order to check the statistical significance in parameters like Root and Shoot length, No of leaflets, No of root branches, Fresh and Dry wt of treated paddy crops. The data was analyzed for three different levels of significance based on the 'p' values

RESULT AND DISCUSSION

Azolla is a free floating aquatic fern, which can be widely found in freshwater environments in temperate and tropical regions all over the world. It ranks among the fastest growing crops on earth and due to its association with the nitrogen fixing Cyanobacteria *Anabaena azollae*, it is independent of external organic nitrogen. In that way *Azolla* species is not only known to fix huge amounts of carbon, but as well to produce vast amounts of organic nitrogen. The nutrient, which mainly limits the growth of *Azolla*, is phosphorous. *Azolla* comes under the family of *Salviniaceae* [13].In the present study the procured strains of *Azolla* were mass multiplied under controlled condition (FIG 1) without *Lemna* species contamination. The dead *Azolla* cultures were removed periodically in order to enhance the oxygen content for a time. The well grown *Azolla* cultures have been treated with the selected paddy cultivars for 21 days.

Fig. 1: Mass multiplied Azolla Species

Seed germination is the growth of an embryonic crop contained within a seed; it results in the formation of the seedling, in the present study the pots were prepared in different combinations of red soil, vermicompost, NPK and *Azolla*. The sowed paddy seeds germination percentage was observed with in 7 to 10 d under controlled conditions. Approximately 95% seeds are germinated well compared with control pot (TABLE 1). The growth of shoot length on 15d & 21d was observed as $8.9 \pm 1.05 \& 16.83 \pm 0.351$ cm in treatment 12, this drastic growth may be the influence of *Azolla*. The graphical comparison of shoot length on 15^{th} and 21^{st} d given in (FIG 2)

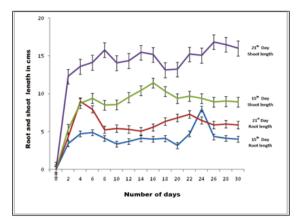


Fig. 2: Root and shoot length of paddy cultivars grown in various treatments on 15d and 21d.

Well development of leaflets in (Treatment 12) and root branches T12 were observed in the Azolla treated paddy crops during the same period of course. The more number of leaflets may enhance the rate of photosynthesis which helps to produce more number of carbohydrate productions in the form of reserved food materials in seeds due to presence of increased level of chlorophyll contents [14] The enhanced level of chlorophyll content in the treated crops was higher compared to control (FIG 2 and TABLE 4), which was observed in the treatment pots 1, 7 and 12 has high level of chlorophyll content. The mean value of total chlorophyll content was expressed in mg/g in TABLE: 4. the enormous development of roots in the crops plays a major role in absorption of minerals and available nutrients in the soil under controlled condition [15] (TABLE 1). Comparatively increased level of wet and dry weight was observed in 15th and 21st d of paddy cultivars of *Azolla* treated crops. (TABLE 3) This indirectly indicates the enhancement of Biomass level [16]. The statistical analysis of selected parameter (TABLE 5) showed statistically significant result due to the impact of Azolla in the present study.

Treatment	Treatment Condition	No of seeds Germination	% of germination
то		17±1	85.00
T1	Sand + Red sail (1:1) - Control Sand + Red soil (1:1) +	14.66 1.52	73.33
T2	Recommended dose NPK (100%) Sand + Red soil(1:1) +	17±1	85.00
Т3	Vermicompost (100%) Sand + Red soil (1:1) + Azolla microphylla (100%)	18.33±0.57	91.67
T4	Sand + Red soil(1:1) + Azolla filiculoids C ₄ hybrids (100%)	17.66 <mark>±0.57</mark>	88.33
T5	Sand + Red soil (1:1) + Azolla microphylla (50%) +	18.66 0.57	93.33
T6	Azolla filiculoids C ₄ hybrids (50%) Sand + Red soil (1:1) +		85.00
10	Saliu + Keu Soli (1:1) +	17±1	05.00

T7Sand + Red soil (1:1) + Azolla filiculoides C4 hybrids (50%) + NPK (50%) 17 ± 1 T8Sand + Red soil(1:1) + Azolla filiculoids C4 hybrids (25%) + Azolla microphylla (25%) + NPK (50%) 15.66 ± 1.52 T9Sand + Red soil(1:1) + Azolla microphylla (50%) + vermicompost (50%) 18 ± 1.73	
T8Sand + Red soil(1:1) + 15.66 ± 1.52 Azolla filiculoids C4 hybrids (25%) + $Azolla microphylla (25%) + NPK (50%)$ 18 ± 1.73 T9Sand + Red soil(1:1) + $Azolla microphylla (50%) + vermicompost (50%)$ 18 ± 1.73	85.00
T9 Sand + Red soil(1:1) + 18±1.73 Azolla microphylla (50%) + vermicompost (50%) 18±1.73	78.33
	88.33
T10 Sand+ Red soil(1:1) + 19.33 ± 0.57	96.67
Azolla filiculoides (C4 hybrids (50%) + vermin compost (50%) 18.66 ± 0.57 T11Sand+ Red soil (1:1) + Azolla microphylla (25%) + Azolla filiculoids C4 hybrids (25%) + Vermicompost (50%) 18.66 ± 0.57	95.33
T12 Sand + Red soil (1:1) + 19 ± 0 Azolla microphylla (25%) Azolla filiculoids C ₄ hybrids (25%) +vermicompost (25%) + NPK (25%)	95.00

Values are mean of triplicate ± standard error

Table 2: Number of leaf lets and Root branches in paddy crop on 15 d and 21 d

Treatment	Treatment Condition	Number of leaf lets		Number of root branches (in cm)	
		15 d	21 d	15 d	21 d
Т0	Sand + Red sail (1:1) - Control	1	2	4.66 ± 0.57	5.0 ± 1.0
T1	Sand + Red soil (1:1) + Recommended dose NPK (100%)	2	2	4.66 ± 1.52	8.0 ±1.73
Τ2	Sand + Red soil(1:1) + Vermicompost (100%)	2	2	4.0 ±1.73	6.33 ±1.52
Т3	Sand + Red soil (1:1) + Azolla microphylla (100%)	2	2	5.0 ± 1.0	6.66 ± 0.57
T4	Sand + Red soil(1:1) + Azolla filiculoids C4 hybrids (100%)	2	2	3.33 ± 0.57	6.0 ± 2.0
Т5	Sand + Red soil (1:1) + Azolla microphylla (50%) + Azolla filiculoids C4 hybrids (50%)	3	4	5.0 ± 1.0	6.0 ± 1.0
Т6	Sand + Red soil (1:1) + Azolla microphylla (50%) + NPK (50%)	2	2	3.66 ± 2.08	10.0 ± 1.0
Τ7	Sand + Red soil (1:1) + Azolla filiculoides C4 hybrids (50%) + NPK (50%)	3	4	3.0 ± 1.0	8.66 ± 1.52
Τ8	Sand + Red soil(1:1) + Azolla filiculoids C₄ hybrids (25%) + Azolla microphylla (25%) + NPK (50%)	2	3	4.33 ± 1.15	7.66 ±1.52
Т9	Sand + Red soil(1:1) + Azolla microphylla (50%) + vermicompost (50%)	2	3	5.33 ± 0.57	6.33 ±0.57
T10	Sand+ Red soil(1:1) + <i>Azolla filiculoides</i> (C4 hybrids (50%) + vermin compost (50%)	2	3	4.66 ± 1.52	5.33 ±1.15
T11	Sand+ Red soil (1:1) + <i>Azolla microphylla (25%) +</i> <i>Azolla filiculoids</i> C ₄ hybrids (25%) + Vermicompost (50%)	2	3	4.66 ±1.52	6.66 ±0.57
T12	Sand + Red soil (1:1) + Azolla microphylla (25%) Azolla filiculoids C₄ hybrids (25%) +vermicompost (25%) + NPK (25%)	2	3	3.66 ± 2.08	10.0 ± 1.0

Value are mean of triplicate ± standard error

Treatment	Treatment Condition	Fresh weight in whole paddy crop(in mg)		Dry weight in whole paddy crop(in mg)	
Treatment	i reatment condition	15 d	21 d	15 d	21 d
Т0	Sand + Red sail (1:1) - Control	0.02 ± 0.01	0.022 ± 0.04	0.008 ± 0.002	0.011±0.0017
T1	Sand + Red soil (1:1) + Recommended dose NPK (100%)	0.02±0.04	0.043±0.001	0.0093 ±0.0032	0.027 ±0.002
T2	Sand + Red soil(1:1) + Vermicompost (100%)	0.04 ± 0.01	0.050 ± 0.031	0.014 ±0.0025	0.029 ± 0.021
T3	Sand + Red soil (1:1) + Azolla microphylla (100%)	0.03 ± 0.008	0.044 ± 0.012	0.028 ± 0.005	0.038 ±0.044
T4	Sand + Red soil(1:1) + Azolla filiculoids C4 hybrids (100%)	0.033 ± 0.006	0.038 ± 0.003	0.008 ±0.0028	0.024 ± 0.004
Т5	Sand + Red soil (1:1) + Azolla microphylla (50%) + Azolla filiculoids C4 hybrids (50%)	0.033±0.005	0.041 ± 0.0005	0.009 ±0.0046	0.082 ±0.010
T6	Sand + Red soil (1:1) + Azolla microphylla (50%) + NPK (50%)	0.045 ± 0.013	0.041 ± 0.014	0.008 ±0.0026	0.023 ±0.005
Τ7	Sand + Red soil (1:1) + Azolla filiculoides C₄ hybrids (50%) + NPK (50%)	0.03 ± 0.02	0.045 ± 0.0050	0.009 ±0.0020	0.027 ±0.005
Τ8	Sand + Red soil(1:1) + Azolla filiculoids C4 hybrids (25%) + Azolla microphylla (25%) + NPK (50%)	0.03±0.09	0.035 ± 0.008	0.007 ±0.0045	0.017 ±0.009
Т9	Sand + Red soil(1:1) + Azolla microphylla (50%) + vermicompost (50%)	0.04 ± 0.04	0.037 ± 0.005	0.008 ±0.001	0.030 ±0.004
T10	Sand+ Red soil(1:1) + Azolla filiculoides (C₄ hybrids (50%) +	0.04±0.02	0.045 ± 0.005	0.011 ±0.015	0.016 ±0.004
T11	vermin compost (50%) Sand+ Red soil (1:1) + <i>Azolla microphylla (25%) + Azolla filiculoids</i> C4 hybrids (25%) + Vermicompost (50%)	0.03±0.01	0.040±0.001	0.008 ±0.0047	0.012 ±0.005
T12	Sand + Red soil (1:1) + Azolla microphylla (25%) Azolla filiculoids C4 hybrids (25%) +vermicompost (25%) + NPK (25%)	0.03±0.007	0.051±0.008	0.006 ±0.0015	0.01 ±0.007

Table 3: Fresh weight and Dry weight of whole paddy crop on 15 d and 21 d

Value of mean triplicate ± standard error

Table 4: Chlorophyll and Carotenoid contents of paddy crop grown in various treatmentson 21d

		Chlorophyll a		Total		
Treatment	Treatment condition	(mg/g fw)	Chlorophyll b	Chlorophyll (mg/g fw)	Carotinoids	
			(mg/g fw)		(µ mole g /fw)	
Т0	Sand + Red sail (1:1) – Control Sand + Red soil (1:1) +	4.50±0.636	2.242±0.253	6.74	1.68±0.044	
T1	Recommended dose NPK (100%) Sand + Red soil(1:1) +	10.08±1.732	1.210±0.590	11.29	3.89±0.015	
T2	Vermicompost (100%) Sand + Red soil (1:1) +	5.06±0.999	2.820±1.04	7.88	1.46±0.04	
Т3	Azolla microphylla (100%) Sand + Red soil(1:1) +	5.17±0.612	2.305±0.932	7.475	1.19±0.125	
T4	<i>Azolla filiculoids</i> C₄ hybrids (100%) Sand + Red soil (1:1) +	4.48±0.670	2.89±0.60	7.37	1.55±0.020	
T5	Azolla microphylla (50%) +	5.15 ± 1.558	2.905 ± 1.254	8.05	2.18±0.025	

	Azolla filiculoids C4 hybrids (50%)				
	Sand + Red soil (1:1) +				
Т6	Azolla microphylla (50%) + NPK (50%) Sand + Red soil (1:1) +	7.57±1.515	2.762±1.172	10.332	2.75±0.043
Τ7	<i>Azolla filiculoides</i> C₄ hybrids (50%) + NPK (50%) Sand + Red soil(1:1) +	6.91±2.035	3.265±0.70	10.175	2.93±0.02
Т8	Azolla filiculoids C4 hybrids (25%) +				
	Azolla microphylla (25%) + NPK (50%) Sand + Red soil(1:1) +	8.34±0.57	2.19±1.28	10.53	2.946±0.037
Т9	Azolla microphylla (50%) + vermicompost (50%) Sand+ Red soil(1:1) +	7.55±0.023	2.976±0.96	10.526	2.56±0.01
T10	Azolla filiculoides				
	(C4 hybrids (50%) +				
	vermin compost (50%) Sand+ Red soil (1:1) +	8.63±0.23	1.218±0.245	9.848	3.106±0.032
T11	Azolla microphylla (25%) +				
	Azolla filiculoids C4 hybrids (25%) +				
	Vermicompost (50%)	7.15±0.23	3.601±0.93	10.751	2.033±0.028
	Sand + Red soil (1:1) +	7.13±0.23	3.001±0.95	10.751	2.035±0.020
T12	Azolla microphylla (25%)				
	<i>Azolla filiculoids</i> C₄ hybrids (25%) +vermicompost				
	(25%) + NPK (25%)	8.32±0.576	3.042±0.894	11.362	2.166±0.015

Value of mean triplicate ± standard error

Table 5: Statistical analysis on different growth parameters of paddy cultivars growth in various treatments

Parameters	15 th d treatment p value	Level of significance With mean	21 st d treatment p value	Level of significance With mean
Root Length in cm	0.0269	*4.573 ± 0.4818	< 0.0001	****6.372 ± 0.3524
Shoot Length in cm	< 0.0001	****9.517 ± 0.2485	< 0.0001	****14.75 ± 0.3582
No of Leaflets	< 0.0001	****2.552 ± 0.08535	< 0.0004	***2.083 ± 0.05921
No of Root branches in cm	< 0.0001	****7.024 ± 0.4968	< 0.0001	****7.303 ± 0.4524
Fresh wt of whole crop in mg	< 0.0001	****0.0340 ± 0.002026	< 0.0001	****0.0425 ± 0.001406
Dry wt of whole crop in mg	0.1653	Not significant	0.0051	**0.02792 ± 0.005442

Significant (p = 0.01 to 0.05), ** Very Significant (p = 0.001 to 0.01) and *** Extremely Significant (p < 0.001) **** strongly significant (p < 0.001)

CONCLUSION

In the present preliminarily study, the procured Azolla species were mass multiplied in controlled condition and the same was utilized for the growth of paddy crops for 30 d. During the course of studies for 30 d the fundamental parameters were investigated. It was observed that, Azolla species started to show their impact from the $15^{th}d$ and was completely degraded in the prepared tub bed on the 21std. Logarithmic growth rate of paddy crop was observed between 15th to 21st d of treatment. Hence further supplementation is recommended to enhance the growth and yield of paddy crops for longer time till harvesting. The functional role and interaction between nitrogen fixation and utilization by paddy crop networks per square feet area namely measurement of Azolla response, grain yield, Crop Nitrogen uptake, excretion of NH₃ by Azolla species in free state conditions, rate of reproduction through sporulation, preparation of dried inoculum along with long shelf life of different Azolla species are yet to be analyzed well. An extensive research

work has to be carried out to produce more quintals of paddy yield using organic fertilizers, which will help to increase the economic status of our rural parts of India.

ACKNOWLEDGMENT

Authors are grateful to TNAU for providing the various cultures of *Azolla* species and Raj agro farms – Dindigul, for the supply of BPT paddy seeds.

AUTHOR'S CONTRIBUTION

MPU, MK and SMG designed the experimental setup. MK, SMG carried out the implementation of various methods. MPU, AN interpreted the results and AN prepared the manuscript. All authors read and approved the manuscript.

REFERENCES

- 1. Meghraj, M.Venkateshwarlu.K and Rao.S 1988. Management in crop production. West view Press ColoradoSundaravarathan, S.; Kannaiyan, S.Influence of *Azolla* PP-98-105.
- 2. Moore, A.W., *Azolla*: Biology and agronomic significance, Bot. Rev., 35, 17-34 1969.
- 3. Kay,S. and Hoyle.S, 2000. Aquatic weed fact sheet.NC State University, College of Agriculture and Life Sciences crop.
- 4. Kannaiyan.S. 1993. Nitrogen Contribution by *Azolla* to Paddy Crop. Proc. Indian natn.Sci.Acad.B59 Nos.3&4 pp. 309-314.
- Thangam.P and Mahalingam.P.U. Whey water as a low cost media for *Azolla* cultivation. J.Bionano Froniter, vol.3 (2); 2010.
- 6. Kulasooriya.A.S.1991.Constraints for the Wide spread Use of *Azolla* in Paddy Production. Nitrogen Fixation developments in Crop and Soil Sciences Vol.48, 1991, pp 473-479.
- 7. William j. Zimmerman Biomass and pigment production in three isolates of Azolla response to water stress .Ann bot 1985 56 (5): 689-699.
- 8. Blundon, David J. 1994. Ecology: Laboratory Manual. Camosun College, Victoria, Canada.
- http://www.knowledgebank.irri.org/training/factsheets/management-of-other-crop-problems-fact-sheetcategory/measuring-seed-germination-fact-sheet.

- Buris, J.S., Edje, T and Wahab, A.H.1969. Evaluation of vigor index of seed and seedling vigor of soybeans. Proc. Assoc. Of Seed Analysis, 59: 73-81.
- 11. http://www.knowledgebank.irri.org/step-by-step-Production/Postharvest/Harvesting/Moisture-Content-Calculations.
- 12. Amon, D. I. 1959. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in *Beta vulris*. Crop Physiol. 24:I-15.
- 13. Gregory M and Wagner et al., 1997. The Botanical review.vol.63, No.1.
- Kannaiyan S.1992. Studies on the factors influencing growth and nitrogen fixation in Azolla. In: Biofertilizer Technology Transfer, Gangawane. Associated publishing Company, New Delhi.Pp: 239-253.
- Mandal B.P. Vlek L.G 1999.Beneficial effects of blue-green algae and *Azolla*, excluding supplying nitrogen, on wetland paddy fields: a review, Biological Fertility of Soils 28: 329–342.
- Teramura, Alan H., M.C. Perry, J. Lydon, M.S. McIntosh, E.G. Summers, 1984. Effects of Ultraviolet-B.Radiation on Crops during Mild Water Stress III. Effects on Photosynthetic Recovery and Growth in Soybean. Crop Physiology. 60:484-492.