
202 

Original Article 

DEVELOPMENT, CHARACTERIZATION AND SKIN IRRITATION OF MANGOSTEEN PEEL 

EXTRACT SOLID DISPERSION CONTAINING CLAY FACIAL MASK 

 

SUCHIWA PAN-ONa,b, SORAVOOT RUJIVIPATa, ANAN OUNAROONa, CHUENJID KONGKAEWa, WAREE 

TIYABOONCHAIa,b,c* 

aFaculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand, bThe Center of Excellence for Innovation in 

Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education, Bangkok, Thailand, cThe Center of Excellence in Medical 

Biotechnology, Naresuan University, Phitsanulok 65000, Thailand 

Email: wareet@nu.ac.th 

Received: 03 Jul 2018, Revised and Accepted: 26 Jul 2018 

ABSTRACT 

Objective: To develop a clay facial mask containing mangosteen peel extract solid dispersion (MPESD) for enhancing α-mangostin bioavailability 

and to determine suitable clay-based facial mask. 

Methods: The MPESD were prepared by a melting-solvent method employing PVP K30 and poloxamer 188 as a carrier. The water solubility was 

determined by HPLC method. The in vitro skin permeability was examined using porcine ear epidermis. The effects of clay types on the physical 

stability of MPESD and α-mangostin adsorption capacity were evaluated. The skin irritation was determined by 4 h human patch test. 

Results: After dissolved optimal formulation of MPESD in water, the spherical micelle was observed with a mean size of ~150 nm and showed 

significantly α-mangostin water solubility enhancement of ~7 mg/ml, 700 times greater than MPE. Upon mixing the MPESD with clays, a dry 

powder was obtained. In vitro permeation studies of the MPESD mixed with titanium dioxide showed lowest α-mangostin permeation, while MPESD 

mixed with mica or talcum showed similar permeation profile as free MPESD solutions. No sign of skin irritation was observed in volunteers after 

application of the MPESD-based clay facial mask patch on the inner forearm skin for 4 h. 

Conclusion: MPESD demonstrates a promising technique for improving water solubility and permeation of α-mangostin which reducing the 

staining effect. In addition, it is safe for topical application and cosmetically acceptable. 
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INTRODUCTION 

Facial mask treatments are among the oldest cosmetic products that 

available in various types. The wash-off typing based on clay 

materials is one of the most popular face masks according to clay 

advantages including softness, small particle size, pH similar to that 

of the skin, astringent effect, good physical exfoliation, moisturizer 

and refreshing action. Moreover, clays readily take in impurities and 

sebum due to their structure and high adsorption capacity [1].  

In the market, many clay facial masks are available, mostly in 

combination with herbs that could increase their efficacy. 

Mangosteen peel extract (MPE), isolated from the peel of Garcinia 

mangostana Linn, is one of the most famous herbs widely used in a 

facial mask. The peel of mangosteen contained a high amount of α–

mangostin, as a major component with yellowish color [2, 3]. 

Fascinatingly, α–mangostin can prevent hydroxyl radical scavenging 

property at a significantly higher degree than vitamin E [4]. 

Furthermore, MPE has anti-bacterial activity against 

Propionibacterium acnes, which has been recognized as pus-forming 

bacteria triggering inflammation in acne [5]. However, the poor 

aqueous solubility and the staining effect of MPE are the main 

problem for facial mask development [6]. 

To overcome these limitations, solid dispersion (SD) has been 

proposed as a carrier system to increase the MPE aqueous solubility. 

SD is a solid dosage form whereby the active substance is dispersed 

in an inert carrier. The mechanisms of enhanced drug water 

solubility include; reduced the drug particle into molecular size, as 

well as the changeability from crystalline to amorphous form, 

improved wettability and enhanced porosity [7, 8]. Consequently, 

this approach could increase the α–mangostin permeation through 

the skin, while reduce the staining effect.  

Although the SD could increase the α–mangostin water solubility, 

the high adsorption capacity of clays may lead to poor bioavailability 

due to the α–mangostin adsorption on the clays. Therefore, in this 

study, we were the first to develop MPESD-based clay facial mask 

with enhanced bioavailability and safety. The mangosteen peel 

extracts solid dispersion (MPESD) were prepared and characterized 

in terms of physicochemical properties and solubility. Then, to 

determine the best commercial clay types for preparing the MPESD-

based facial mask powders, the effects of types of clay on physical 

stability of MPESD, and in vitro permeation through porcine ear 

epidermis were evaluated. In addition, skin irritation of the MPESD-

based clay facial mask was investigated in healthy volunteers. 

MATERIALS AND METHODS 

Materials 

Standard α-mangostin was purchased from ChromaDex (Lot No. 

00013095-122, Bangkok, Thailand). Mangosteen peel dried powder 
was provided by Tipco® (Prachuap Khiri Khan, Thailand). 

Polyvinylpyrrolidone K30 (Kollidon®30) was purchased from Bang 
Trading 1992 Co. (Bangkok, Thailand). Poloxamer 188 (Kolliphor® 

P188) was purchased from BASF Ltd. (Ludwigshafen, Germany). 
Sodium lauryl sulfate (SLS) was purchased from Ajax Finechem 

(Australia). Clays including mica, silicon dioxide (SiO2), talcum (Talc) 
and titanium dioxide (TiO2) cosmetic grade, were purchased from 

TTK Science Co. (Phitsanulok, Thailand). All other chemicals and 
reagents were used of analytical grade. 

Methods 

Preparation of mangosteen peel extract (MPE) and α-mangostin 

content analysis 

Dried powder of mangosteen peel was macerated with methanol 

(ratio 1:5) for 12 h (2 times) at room temperature. The extract was 

filtered through Whatman filter paper No. 1 and concentrated under 

reducing pressure. The crude extract was dried using hot air oven at 

50°C and ground to obtain MPE. The percentage of yield was 
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calculated by the following equation 1. Quantification of α-

mangostin in MPE was determined with high-performance liquid 

chromatography (HPLC, Shimadzu, Kyoto, Japan), equipped with LC-

10ATvp pump, SPD-10A UV detector and a reversed phase Vertisep 

C18 column (5 µm, 4.6x250 mm). The mobile phase consisted of 

0.2% orthophosphoric acid and acetonitrile (10:90, v/v). The 

analysis was conducted at a flow rate of 1 ml/min with the UV 

detector set at 320 nm. MPE was kept at 4°C in a tight and light 

protected container until used. 

% yield =  
Dried crude extract (g)

Dried powder of MPE (g)
× 100 ………….… (1) 

Preparation of mangosteen peel extract solid dispersion 

(MPESD)  

MPESD was prepared by the melting-solvent method with various 

mass ratios of MPE, PVP K30 and poloxamer 188; 1:2:0, 1:4:0, 

1:2:0.25, 1:2:0.5, 1:2:0.75, 1:4:0.25, 1:4:0.5 and 1:4:0.75. Briefly, PVP 

K30 and poloxamer 188 were melted with the aid of DI water. Then, 

the MPE was dissolved in absolute ethanol before adding into the 

melted PVP K30 and poloxamer 188 with constant stirring in an ice 

bath for 5 min. Then, to remove the solvent, the samples were put in 

hot air oven at 45°C for 12 h. Finally, the dried MPESD were ground 

using mortar and pestle before being kept in a desiccator at 4°C for 

further studies. Mangosteen peel extracts physical mixture (MPEPM) 

was obtained by mixing MPE, PVP K30 and poloxamer 188 with 

mortar and pestle.  

Determination of drug recovery and drug loading 

Ten mg of the MPESD were accurately weighed and dissolved in 10 

ml of methanol. A 200 µl sample was then diluted with mobile phase 

to 1 ml. The α-mangostin was analyzed by HPLC as mentioned 

above. The percentage of drug loading and drug recovery were 

calculated by the following equation 2 and 3, respectively. 

α-mangostin loading (%) = 
Amount of the α�mangostin from MPESD

Weight of the MPESD
x100…… (2) 

α-mangostin recovery (%) = 
Amount of the α�mangostin from MPESD

Amount of α�mangostin added
x100… (3) 

Solubility study 

An excess amount of the MPESD was added into 1 ml of DI water and 

stirred at 900 rpm for 24 h at room temperature. Samples were then 

centrifuged at 18000 rpm for 30 min, and the supernatant was 

filtered through a 0.45 µm nylon filter membrane. Then, the amount 

of α-mangostin in the supernatant was determined by HPLC as 

described above. All measurements were performed in triplicate. 

Physico-chemical characterization of MPESD 

Mean particle size (MS) and size distribution 

The mean particle size (MS) and polydispersity index (PI) were 

characterized by the dynamic light scattering (DLS) technique employing 

the ZetaPALS® analyzer (Brookhaven Instrument Corporation, 

Holtsville, USA). This instrument was equipped with a 35 mW helium-

neon laser diode operating at 632.8 nm and a BI-200SM Goniometer 

connected to a BI-9010AT digital correlator. All samples were diluted 

with DI water. The MS and PI value were analyzed by auto measuring 

mode at a fixed angle of 90° and run for 6 measurement cycles. The 

particle size data were analyzed using a hydrodynamic diameter and the 

measurement was performed in triplicate. 

Morphology 

Ten mg of the MPESD was dissolved in 1 ml of the DI water. Then, 10 

µl of the MPESD solution was deposited on a carbon-coated copper 

grid and negatively stained with 10 µl of 2% w/v uranyl acetate. 

Excess solvent was removed with a Whatman No.1 filter paper and 

allowed to air–dry in a desiccator for further observation by a 

transmission electron microscope (TEM, Tecnai 12, Philips, OR, USA). 

Physical stability of MPESD on clays 

The stability of MPESD on clay was investigated by mixing MPESD 

with various types of clay; mica, SiO2, Talc, and TiO2, at a MPESD to 

clay mass ratio of 1:10 using mortar and pestle. The samples were 

stored at room temperature for 1 mo, and the physical appearance 

of the mixtures was visually observed. 

In vitro permeation studies of the mixture of MPESD and clay 

To evaluate the effects of clay on the α-mangostin released from MPESD, 

in vitro permeation of the MPESD was studied using a vertical Franz 

diffusion cells (PermeGear, Hellertown, USA) maintained at 32±1°C. The 

diffusion area was 2.46 cm2 with 12 ml of receptor medium, DI water. 

The porcine ear epidermis was fitted between a donor and receptor. The 

subcutaneous fat tissue was removed from the full-thickness ear skin 

which had been excised from the porcine ear, obtained from the 

slaughterhouse. Then, the epidermis was carefully separated from the 

dermis, using a heat separation technique, after the skin had been 

immersed in hot water at 60±1°C for 2 min. The transepidermal water 

loss (TEWL) value of the separated epidermis was determined using a 

Tewameter (Model TM 300, Courage and Khazaka electronic GmbH, 

Germany). A TEWL value of less than 15 g/m2 h was used as an indicator 

of the undamaged epidermis. The study was carried out with the 

approval of the Naresuan University Animal Ethics Committee, 

Phitsanulok, Thailand (5802002). 

After the skin equilibration for 30 min, the mixture of MPESD and clay, 

at the mass ratio of 1:10, was evenly spread on the porcine epidermis. 

Then, 500 µl of the receptor medium was taken at predetermined time 

intervals of 15, 30, 60, 120 and 240 min and immediately replaced by 

fresh receptor medium. The amount of α-mangostin permeation was 

determined by a UV-Vis spectrophotometer (Genesys 10 Series, 

Thermo Fisher Scientific Inc., USA) at 320 nm. 

Preparation of MPESD-based clay facial mask powders 

Based on the results from the in vitro permeation studies of the 

MPESD, mica, Talc and SiO2 were selected as clay-based facial mask 

powders. The clay-based phase was prepared by dissolving glycerin, 

propylene glycol, Tween 80 in the DI water before mixing with the 

mixture of mica, SiO2 and Talc using mortar and pestle. Then, MPESD 

(1:4:0.5) was gentle mixed with the clay-based phase to obtain the 

MPESD-based clay facial mask powders. The sample was kept in a 

desiccator at room temperature for 1 d to evaporate the DI water.  

Skin irritation test in healthy volunteers 

The safety of the MPESD-based clay facial mask was determined using a 

4 h human patch test [9]. The clinical study protocol was approved by 

the Institutional Research Board, Naresuan University, Phitsanulok, 

Thailand (approval number 004/58, 27 May 2016). Volunteers were 

enrolled using the inclusion criteria: (i) Healthy Thais, either gender, 

aged 20-50 yeras; (ii) no history of smoking, alcohol or drug use; or 

allergies to cosmetics within the past 3 mo. Participants were excluded if 

they (i) have been to exposed to a topical steroid, alpha hydroxy acids 

(AHAs) or salicylic acid within the past 3 mo before the study; (ii) 

received treatment with a topical medicine within 1 mo before the study; 

(iii) had a skin disease, or wound on inner forearm; (iv) history of atopic 

dermatitis or skin hypersensitivity reaction. Written informed consent 

was obtained from 30 participating volunteers. 

The design of this study was a randomized, double-blind controlled trial, 

with study samples coded and randomized at the source, and with the 
volunteers, investigators and independent statistician blind to the coding 

until after study and initial data analysis had completed. The tested 
product was MPESD-based clay facial mask containing α-mangostin 

∼0.03 mg/ml whereas 10% (w/v) SLS aqueous solution was used as a 
positive control. The baseline measurement was performed in a room 
maintained at 25±2 °C and 50±5% relative humidity after a 30 min rest 

for equilibration. A Webril pad, 1.5 x 1.5 cm2 containing 0.2 ml of sample, 
was then randomly applied to the volunteer inner forearm for 4 h. 

Treatment sites were evaluated for the presence of irritation using a 2 

point scale at 0.5 and 24 h after removal of the patch. Erythema, scaling, 
and fissuring of the skin were assessed by the dermatologist using the 

Frosch and Klingman scale. In addition, skin irritation was identified by 
transepidermal water loss (TEWL) using Tewameter® [Tewameter® 

TM 210 Courage and Kazaka, Cologne, Germany).  

Statistical analysis 

The results were expressed as mean±standard deviation (SD). 

Differences between the groups were compared by one-way ANOVA 
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followed by Tukey’s post hoc test. The results were considered to be 

statistically significant at *P<0.05. Paired t-test was used to 

determine the difference in mean outcomes between tested and 

positive control sides, at 0.5 and 24 h. The level of statistical 

significance was set at 0.05. 

RESULTS AND DISCUSSION 

Preparation of MPE and α-mangostin content analysis 

Preparation of MPE using the method described above produced the 

powder extract with the yield of 24.05% (w/w) compared to the 

dried powder weight. The appearance of the MPE was a brown solid 

powder. Based on HPLC analysis, α-mangostin was found as the 

major compound in MPE with 29.44±0.32% (w/w).  

Preparation of the mangosteen peel extract solid dispersion 

(MPESD)  

MPESD was successfully prepared using the melting-solvent method. 

By dissolving MPE in a minimum volume of the absolute ethanol 

before mixing with the molten aqueous PVP K30 without and with 

poloxamer 188, the homogeneous mixture was obtained when 

heated at ~60°C. This due to the water can act as a plasticizer and 

further reduce the glass transition temperature (Tg) of PVP K30 to 

below 50°C [10]. Therefore, the MPE could be dissolved easily and 

completely in PVP K30, without and with poloxamer 188. After rapid 

cooling, the composition solidified and then the molecular 

dispersion of the MPE in PVP K30 matrix was achieved. After drying 

and grinding, the obtained MPESD powders were found to be fine 

and orange-yellowish powders. 

Percentage of drug recovery and drug loading 

All MPESD preparations showed high α-mangostin recovery 

efficiency, ~100%, indicating that the amount of PVP K30 and 

poloxamer 188 have no effect on the drug recovery efficiency. In 

addition, MPESD showed similar drug loading, and recovery 

efficiency as compared to those of physical mixing, table 1. This 

suggested that α-mangostin was not degraded during the 

preparation process by melting-solvent method. 
 

Table 1: The effects of PVP K30 and poloxamer 188 content on the percentage of α-mangostin recovery and α-mangostin loading from 

MPESD 

Mass ratio of MPE: PVP K30: poloxamer 188 α-mangostin recovery (%)±SD  α-mangostin loading (%)±SD  

MPESD  MPEPM MPESD  MPEPM 

1:2 103.49±2.74 96.75±7.38 11.64±0.31 10.69±0.82 
1:4 102.68±0.51 103.79±5.92 6.72±0.03 6.54±0.37 

1:2:0.25 100.55±2.39 97.26±2.38 12.17±0.29 9.53±0.23 

1:2:0.5 102.40±1.92 98.40±4.83 11.55±0.22 8.93±0.44 

1:2:0.75 101.79±2.48 97.19±2.44 7.98±0.19 8.25±0.21 

1:4:0.25 100.13±3.79 99.39±3.21 5.90±0.22 5.90±0.19 

1:4:0.5 103.65±4.35 96.77±3.38 5.50±0.23 5.48±0.19 

1:4:0.75 96.27±4.76 96.49±1.90 5.10±0.25 5.09±0.10 

The results are presented as mean±standard deviation; n=3. 

 

Solubility study 

The effects of PVP K30 and poloxamer 188 content on the α-

mangostin water solubility were investigated. MPESD illustrated a 

mark improvement in the dissolution behavior over the MPEPM and 

MPE. The α-mangostin water solubility of MPE was found to be 

10.62±0.27 µg/ml, which at least 50 times lower than that of the 

MPESD (1:2) prepared with PVP K30 as a carrier, ~0.5 mg/ml, table 

2. The α-mangostin water solubility of MPESD increased as the 

amount of PVP K30 and poloxamer 188 increased (ANOVA analysis, 

P<0.05). MPESD (1:4) showed higher α-mangostin water solubility 

than MPESD (1:2), ~0.8 and 0.5 mg/ml, respectively. Nevertheless, 

MPESD with poloxamer 188 as a co-carrier, MPESD (1:4:0.25), 

showed a substantial improvement in α-mangostin water solubility 

of ~6.5 mg/ml. The water solubility was further enhanced by 

increasing poloxamer 188 content, MPESD (1:4:0.5) showed water 

solubility of ~7.7 mg/ml. However, the α-mangostin water solubility 

of MPESD prepared with the mass ratio of 1:4:0.5 and 1:4:0.75 

showed no significant difference (ANOVA analysis, P>0.05).  

The improved dissolution behavior of MPESD with PVP K30 would 
be a result from the molecular dispersion of α-mangostin in carriers 
and hydrophilic property of PVP K30 [11, 12]. In addition, as shown 
in table 2, the presence of poloxamer 188 could significantly 
improve the α-mangostin water solubility up to 727 times higher 
than MPE. This could be attributed to its high HLB value of 22 and 
surfactant property of poloxamer [13, 14].  

The physical mixtures also exhibited higher α-mangostin water 
solubility than MPE. This could be explained by the hydrophilicity of 
polymer increases wettability and dispersibility of drug in the 
medium, and thus, reducing interfacial tension between the 
hydrophobic drug and the aqueous medium [15]. Nevertheless, 
MPEPM showed lesser α-mangostin water solubility than MPESD 
confirming no interaction between α-mangostin and carriers. 

 

Table 2: The effects of PVP K30 and poloxamer 188 content on the α-mangostin water solubility of the MPESD 

Mass ratio of MPE: PVP K30: poloxamer 188 α-mangostin water solubility (mg/ml)±SD  

MPESD  MPEPM 

1:2 0.51±0.05 0.12±0.03 

1:4 0.82±0.03 0.13±0.01 

1:2:0.25 1.38±0.01 0.23±0.02 

1:2:0.5 2.03±0.23 0.28±0.13 

1:2:0.75 4.72±0.24 0.42±0.10 

1:4:0.25 6.55±0.50 0.28±0.01 

1:4:0.5 7.72±0.46 0.34±0.01 

1:4:0.75 7.36±0.15 0.71±0.16 

The results are presented as mean±standard deviation; n=3. 

 

Physico-chemical characterization of the MPESD 

The dynamic light scattering (DLS) analysis showed that the amount of 

poloxamer 188 was a critical parameter for controlling the particle size. 

Upon dissolved in water, the MPESD prepared using only PVP K30 as a 

carrier showed a particle size of ~200 nm, larger than those prepared 

with poloxamer 188 as a co-carrier, 120-170 nm, table 3. The results 

revealed that the mean particle size of MPESD tended to decrease as the 
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poloxamer188 content was increased. Poloxamer 188, as a surfactant, 

can reduce the interfacial energy on the surface of MPESD leading to a 

decrease in the particle size. In addition, all formulations possessed a 

polydispersity index of 0.17-0.30 indicating a narrow size distribution. 

  

Table 3: The effects of PVP K30 and poloxamer 188 content on the mean particle size (MS) and polydispersity index (PI) of the MPESD 

Mass ratio of MPE: PVP K30: poloxamer 188 MPESD 

MS (nm)±SD PI±SD 

1:2 191.4±7.9 0.27±0.07 

1:4 189.9±12.5 0.26±0.02 

1:2:0.25 168.5±3.1 0.27±0.04 

1:2:0.5 153.7±4.9 0.26±0.04 

1:2:0.75 148.0±4.5 0.27±0.03 

1:4:0.25 141.7±6.1 0.22±0.09 

1:4:0.5 114.2±1.2 0.23±0.09 

1:4:0.75 118.5±5.8 0.33±0.02 

The results are presented as mean±standard deviation; n=3. 

 

Upon dilution with water, the TEM micrograph of the MPESD at the 

mass ratio of 1:4:0.5 showed spherical micelles with a mean particle 

size of ~120 nm, fig. 1. The forming micelles were composed of the 

MPE enclosed by PVP K30 and poloxamer 188. Thus, the MPESD has 

been demonstrated to improve the water solubility of α-mangostin. 

 

 

Fig. 1: TEM micrograph of MPESD prepared with the MPE to PVP 

K30 to poloxamer 188 mass ratio of 1:4:0.5. At a mangnificant 

of 18,500 

 

Physical stability of the MPESD on clays 

Before developing the MPESD-based clay facial mask powders, the 

physical stability of the MPESD with various types of clay mixtures 

was visually observed after 1 mo storage at the room temperature. 

All MPESD formulations showed good physical appearance when 

mixed with tested clays. The mixtures were dry powders similar to 

those before mixing. Therefore, the MPESD at the mass ratio of 

1:4:0.5 was selected for preparing the MPESD-based clay facial mask 

powders due to its high α-mangostin water solubility. 

In vitro permeation studies of the mixture of MPESD and clay 

In vitro permeation study using porcine ear epidermis was 

performed to confirm the α-mangostin adsorption capacity of clays. 

As expected, MPE showed no α-mangostin permeation through the 

porcine ear epidermis due to its low water solubility. On the 

contrary, the MPESD showed a fast permeation characteristic with 

the high α-mangostin permeation of ~60% at 15 min, fig. 2. The 

MPESD significantly increased the α-mangostin water solubility. As a 

result, there is a high concentration gradient of the α-mangostin at 

the interface, which is the driving force for the α-mangostin 

permeation. The mixture of MPESD: mica and MPESD: Talc exhibited 

similar permeation profile as the MPESD solution suggesting less α-

mangostin adsorption on mica and Talc. In contrast, the mixture of 

MPESD: SiO2 and MPESD: TiO2 showed the lower α-mangostin 

permeation. MPESD: SiO2 and MPESD: TiO2 exhibited α-mangostin 

permeation of ~30% within 15 min. Thus, these results strongly 

confirm that types of clays play an important role for active 

ingredient adsorption. Moreover, MPESD could be used as a mean to 

significantly improve the α-mangostin permeation that could be a 

benefit for facial mask application. 

 

 

Fig. 2: In vitro permeation profiles of MPE, MPESD and MPESD incubated with different clays, mica, silicon dioxide, talcum, and titanium 

dioxide, at a mass ratio of 1:10. MPESD prepared with the MPE to PVP K30 to poloxamer 188 mass ratio of 1:4:0.5. Error bars show 

standard deviation for n = 3 
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Evaluation of skin irritation in healthy volunteers 

Eleven male and 19 female volunteers were recruited, with a mean age 
of 29.40±6.90 y. None of the volunteers developed adverse events 
after the 4 h patch test. The main function of skin stratum corneum is 
to serve as a barrier by protecting skin from irritant permeation and 
preventing trans-epidermal water loss. Thus, an increased TEWL 
value, obtained by measuring water vapor loss from the skin, is 
considered a sensitive indicator of skin disruption [16]. SLS, an anionic 
surfactant, is commonly used as a positive control in the cytotoxicity 
assay. This due to SLS causing skin damage or destruction of the skin 
barrier leading to skin dryness. SLS might also penetrate and damage 
the deeper nucleated layers of the epidermis [17]. 

Treatment with the formulation for 4 h showed a continuing low 

TEWL similar to baseline indicating the absence of any skin 

disruption at both 0.5 and 24 h after patch removal, table 4. In 

contrast, sites treated with 10% SLS showed persistency raised 

TEWLs than baseline at both times points tested indicating 

persistently damaged skin. The mean difference of TEWL values in 

MPESD-based clay facial mask was statistically significantly different 

compared to the positive control (10% SLS) at 0.5 and 24 h 

indicating the skin responded to the challenge. This study confirmed 

that higher TEWL was associated with irritant exposure, TEWL 

indirectly assesses irritation through modification of the skin 

barrier.

 

Table 4: Skin irritation parameter of MPESD-based clay facial mask powder 

Characteristics MPESD-based clay facial mask powders treatment±SD Positive control; 10% SLS±SD P-value 

Baseline (B) After (A) A-B Baseline (B) After (A) A-B 

TEWL value (g h-1 m-2) 

0.5 h 9.30±2.49 10.76±2.98 1.45±2.53 9.13±1.92 15.19±4.14 6.06±3.50 >0.0005* 

24 h 9.73±2.20 0.43±2.45 15.94±5.76 6.81±5.28 >0.0005** 

Visual scoring by a dermatologist 
Erythema A-B Baseline (B) A-B P-value 

0.5 h 0* 0.00±0.00 0.13±0.22 >0.0005* 

24 h 0.10±0.21 >0.0005** 

Dryness A-B Baseline (B) A-B P-value 

0.5 h 0* 0.00±0.00 0.43±0.17 >0.0005* 

24 h 0.47±0.13 >0.0005** 

Fissures A-B 

0.5 h 0* 

24 h 

0*= no irritation identified by dermatologist, *Statistical significance (P<0.05) between baseline and 0.5 h,**Statistical significance (P<0.05) between 

baseline and 24 h, aErythema: 0 = no evidence of erythema, 0.5 = minimal or doubtful erythema, 1+= slight redness, spotty and diffuse, 2+= 

moderate and uniform redness, 3+= strong uniform redness, 4+= fiery redness, bDryness: 0 = no evidence of scaling, 0.5 = dry without scaling or 

appears smooth and taut, 1+= fine or mild scaling, 2+= moderate scaling, 3+= severe scaling with large flakes, cFissures: 0 = no evidence of fissures, 

1+= cracks, 2+= single or multiple broader fissures, 3+= wide cracks with hemorrhage or weeping 

 

These results were in agreement with a visual assessment by the 

dermatologist who detected no sign of skin irritation with the test clay, 

whereas 10% SLS showed erythema and dryness in all participants. No 

fissure was observed in both MPESD-based clay facial mask and the 

positive control, fig. 3. Therefore, the developed MPESD-based clay facial 

mask could be considered as mildness and safe for topical application. 

 

 

Fig. 3: Representative Photographs of inner forearm assessment at A) baseline, before patch application, B) 0.5 h after removing patch and C) 

24 h after removing patch. The area (B) was treated with positive control and area (G) was treated with MPESD-based clay facial mask 

 

CONCLUSION 

Solid dispersion (SD) is a powerful technique for increasing water 

solubility of poorly soluble substances. MPESD was successfully 

developed to improve water solubility of α-mangostin. Compared to 

MPE, this technique showed greater α-mangostin solubility and 

permeation. In addition, this study clearly showed that clays play a 

vital role in the permeation of the active substance through the skin. 

The selection of clays used in facial mask formulation is a critical 

step in the MPESD-based facial mask powders formulation. Thus, by 

selecting the proper clay base, the bioavailability of active 

substances in clay-based facial mask could be improved. In 

conclusion, MPESD demonstrates a promising technique for 

improving water solubility and permeation of α-mangostin. In 

addition, it is safe for topical application and cosmetically 

acceptable. Nevertheless, double-blind, placebo-controlled trials in 

the individual should be performed in the efficacy study in the future 

to assure its cosmetic benefits. 
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