THE COMBINATION OF EXERCISE AND ASCORBIC ACID DECREASE BLOOD GLUCOSE LEVEL AND TEND TO AMELIORATE PANCREATIC ISLETS AREA ON HIGH CARBOHYDRATE DIET RATS

LILIK HERAWATI1,2*, LINA LUKITASARI3, RIMBUN RIMBUN4, BAMBANG PURWANTO1,2, GADIS MEINAR SARI1

1Department of Physiology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. 2Sport Clinic, Faculty of Medicine, Universitas Airlangga and Dr. Soetomo Hospital, Indonesia. 3Department of Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya. 4Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Surabaya. Email: lilik_heraw@fk.unair.ac.id

ABSTRACT

Objective: This study is conducted to determine the protective effects of physical exercise and ascorbic acid on increasing blood glucose (BG) levels and islet pancreatic area in high-carbohydrate (HC) diet rats.

Methods: A total of 20 rats were divided into four groups: Control group which was a HC and treatment groups which were HC plus exercise (HCEx), HC plus ascorbic acid (HCA), and HCEx and ascorbic acid (HCExAs). The duration of treatment was 9 weeks. Swimming to exercise held 6 times a week and ascorbic acid dose was 9 mg.

Results: It showed that the smallest body weight was HCEx group. BG difference (before and after treatment = BG diff) had a significant difference among groups, and the lowest level of BG diff was HCA group. HCA had the biggest BG diff. However, there was no significantly difference among groups on islet pancreatic area, but HC group had the largest area.

Conclusion: This study suggests that a combination of exercise and ascorbic acid on HC diet subject may regulate BG level compared to the exercise or ascorbic acid alone. However, they do not influence pancreatic islet area.

Keywords: High-carbohydrate diet, Exercise, Ascorbic acid, Pancreatic islets.

INTRODUCTION

Prolong increasing calories can induce obesity and metabolic disease such as diabetes. It was known that there was an association in increasing 150 kcal/person/day in sugar with rising diabetes prevalence by 1.1% [1]. The prediction of diabetes prevalence in 2035 is 592 millions [2]. Establish prevention to diminish calories exess is physical exercise. The suggestion exercise for health maintenance is aerobic exercise [3]. Exercise can stimulate independent insulin-glucose uptake by cells and may provide a protective effect for beta cells. However, it also reveals that exercise can stimulate free radical production. In condition, there is no balance with internal antioxidant, and it can lead to pathologic process. Imbalance of free radicals and antioxidant is one of the several factors which may trigger the destruction of beta-cells of pancreatic islets [4].

Free radicals need to be neutralized with antioxidants. In China, carotene and ascorbic acid intake had reciprocal correlation with deaths from all causes in middle-aged or elderly people [5]. It also identified that high-dose ascorbic acid and tocopherol consumption caused higher trend in blood glucose (BG) level on rate athletes [6]. However, the effect of exercise and ascorbic acid on pancreatic islets on high carbohydrate (HC) diet subjects is nor clearly yet. Therefore, this study is conducted to explore it.

METHODS

The research was pre–post control group experimental design, which conducted at Animal Model Laboratory of the Department of Biochemistry and Histology Laboratory of the Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia. The study was approved by the Unit of Research and Community Service, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.

Health adult male Wistar rats (Rattus norvegicus), weighing 110–145 g, were acclimatized for 1 week. The sample size was five rats for each group, and the number of study groups was four groups. The group that consisted of a HC diet group as control group was given standard diet plus sugar solution, HC plus exercise (HCEx) group was given treatment as HCEx, HC plus ascorbic acid (HCA) group was given treatment as HCA solution, and HCEx and ascorbic acid group (HCExAs) were given treatment as HCAex and also ascorbic acid.

Rats were doing swimming exercise for 30 min, 6 times a week, at about 10 am–11:30 am, in 28–30°C water for about 9 weeks. The exercise dose was given based on the previous study (Herawati et al., 2015).

HC diet was 1 g/mL white sugar solution in 2 mL oral gavage and 0.2 g/mL white sugar solution as daily ad libitum drink. The oral gavage dose was converting dose from the glucose tolerance test in rats and Adeyi et al research [7] was applied for ad libitum dose. The ascorbic acid or Vitamin C 100 mg/mL, 2 mL in each ampule (PT Ethica), was diluted with aqua water. The dose given was 9 mg in 2 mL water for each rat. The ascorbic acid dose was based on converting factor [8] from 500 mg ascorbic acid from human dose.

Body weight (BW) in gram was measured before and after treatment. The BW variables were used for the growth observation of the rats. It consisted of BW before (BW pre), after (BW post), and the increasing difference of the before and after BW during the treatment (BW diff).

BG samples (mg/dL) were randomized BG, blood dropped from the tail, which was taken at the beginning and end of treatment. It was measured by an Accu-Chek Active glucometer. The BG level variables were BG before treatment (BG pre), after treatment (BG post), and the
increasing difference between BG levels after and before treatment (BG diff). The last was referred to the change of BG levels.

The increase area of islets of pancreas (µm²) was calculated on Image Raster 3 software, with hematoxylin-eosin staining. Measurement of area is the average of five islets.

Normality test was performed first to determine whether the data distribution was normal or not. If the data were not normally distributed, it would be followed by Kruskal–Wallis test, and if it was normal, then it was continued with ANOVA. The significant level was set in 5%.

RESULTS AND DISCUSSION

BW

The BW after treatment was not significantly difference among groups (p=0.148) nor the increasing difference of BW (p=0.263) as shown in Table 1.

The lowest BW after treatment (BW post) was HC diet plus exercise and also ascorbic acid group (HCExAs), and the highest of BW post was HC diet group.

This research revealed that there was no difference on BW including after treatment and the change of BW. The increase BW in this result had the same pattern alteration with the research conducted by Adeyi et al. [7].

Fig. 2 illustrates, though the HCExAs had the lowest BW post, the smallest increase of BW was the HCEx group. The largest increase was HCA group. However, there were no significant difference among groups (p=0.05).

Despite the insignificantly difference among groups on BW, the further exploration of the changing BW in each group was doing. It was revealed that there was noteworthy alteration in each group which found in HC and HCA groups (Table 2).

It demonstrated that the significant weight gain was on HC and HCA group. The exercised HC subject (HCEx) did not show any significant increase even though they were also given ascorbic acid (HCExAs). The exercise treatment on the HCEx and HCExAs groups disclosed a little increase on BW. According to the review article by Kanter [9], it said that physical improvement on exercise needs HC diet. However, the prior study stated that high-intensity ergocycle exercise leads to increase fat oxidation on low carbohydrate diet men compared to HC diet men [10]. The result of our study had a contrary result. The swimming exercise in this study was about moderate intensity. In HC diet subjects with moderate level of exercise, it showed the smallest raises on weight. It meant that energy metabolism was higher compared to the non-exercise subject as the recommendation for diabetes person to regulate elevated BG [11]. The weight gain on the HC subject with the ascorbic acid (with or without exercise) showed higher level compared to the exercise subject. As said by Lee et al. [12], ascorbic acid reduced mitochondria function on rats which leads to minimize oxidation of energy source.

BG

The random BG before and after treatment had no significantly difference (p=0.077 and p=0.074) (Table 3). The increasing difference of BG was significantly difference among groups (p=0.009).

The highest BG before treatment (BG pre) was HCExAs group, but the BG of the HCExAs group unchanged after treatment. The highest of BG post was HCAs and followed by HC group which had a very little difference level compared with HCA group.

The BG before and after treatment (BG diff) is presented in Fig. 3. The largest increase of BG diff was HCA group. In spite of increasing BG, HCA groups performed the decreasing of BG after treatment. This result was similar with a study on diabetes people doing aerobic exercise [3].

Almost groups which set HC diet had a higher level on BG after treatment, except which performed exercise. It revealed that the exercise neutralized the effect of HC diet. However, ascorbic acid alone increased more level of BG. If ascorbic acid combined with exercise, the raised BG level would be diminished.

The previous studies uncovered that high-dose antioxidant (ascorbic acid and tocopherol) in dive athletes rised blood glucose level, and
Herawati et al.


The balance of antioxidant and free radicals is important to establish the normal body function. Based on several studies, free radicals induced insulin secretion [17,18]. When insulin secretion increase, blood glucose uptake also increase by the cells, then BG level become lower than before. On the other hand, a study revealed that exercise also stimulated free radicals production. Besides that, it has been known that because of contraction (i.e., exercise), there is an increase of calcium ion in muscle cells that can generate free radicals (H2O2), and in sequence reactions, they induce GLUT4 translocation and cause glucose uptake by cells [19]. However, ascorbic acid addition reduced the effect of free radicals, subsequently, insulin secretion and glucose uptake decrease, and the reduction of BG will lessen compared to the group without ascorbic acid.

Table 2: Result of paired samples t-test on body weight before and after treatment in each group

<table>
<thead>
<tr>
<th>Group</th>
<th>Body weight (g)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Before*</td>
<td>After*</td>
</tr>
<tr>
<td>HC</td>
<td>128.60±7.44</td>
<td>176.83±17.72</td>
</tr>
<tr>
<td>HCEx</td>
<td>130.40±11.01</td>
<td>151.93±22.30</td>
</tr>
<tr>
<td>HCA</td>
<td>114.00±15.70</td>
<td>165.71±6.70</td>
</tr>
<tr>
<td>HCExAs</td>
<td>115.60±10.81</td>
<td>137.72±39.90</td>
</tr>
</tbody>
</table>

*Means±SD, n=5. BW: Body weight, HC: High-carbohydrate, HCEx: High-carbohydrate plus exercise, HCA: High-carbohydrate plus ascorbic acid, HCExAs: High-carbohydrate plus exercise and ascorbic acid

CONCLUSION

Regular exercise controlled BG level on HC rats. It could be the involvement of increasing GLUT4 translocation. Ascorbic acid appeared to slow down glucose uptake, so BG level was higher compared to the other study by Dakhale et al. [14] also found the BG elevation due to intravenous ascorbic acid. Yet, the glucose by cells [6]. The dose of ascorbic acid in this research was in moderate dose, so it needs further exploration. The group which carried out the regular exercise had lower BG level. Based on similar studies, it was because of the role of regular exercise to regulate BG level as its energy source for exercise and the improvement of muscle GLUT4 (glucose transporter-4) expression that lead to an uptake more of blood glucose than before. On the other hand, a study revealed that exercise also stimulated free radicals production. Besides that, it has been known that because of contraction (i.e., exercise), there is an increase of calcium ion in muscle cells that can generate free radicals (H2O2), and in sequence reactions, they induce GLUT4 translocation and cause glucose uptake by cells [19]. However, ascorbic acid addition reduced the effect of free radicals, subsequently, insulin secretion and glucose uptake decrease, and the reduction of BG will lessen compared to the group without ascorbic acid.

Islets of the pancreas

The largest area of pancreatic islets (islets per square micrometer) was HC group, subsequently HCA group, and HCEx group, and the smallest was HCExAs group. Nevertheless, as shown in Fig. 4, it did not show significantly different among groups (p=0.065).

The difference of the hematoxylin-eosin staining of pancreatic islets is exemplified in Fig. 5, for each group.

The larger area of pancreatic islets was HC diet group, without any additional exercise nor ascorbic acid. Yet, it demonstrated no significant difference among the groups. This result was in line with Adeyi et al. [7] which stated no difference among groups on pancreatic islets due to high glycemic index diet on rats. Other research which assessed the distinction of insulin level on sedentary and exercise training persons, and it informed that insulin serum level in exercise training group was lower compared to the sedentary. However, insulin content in pancreatic islets did not exhibit dissimilarity [20]. Nevertheless, contradiction result was published by Sheng et al. [21], and it unveiled beta cell mass expansion in high glucose diet for 12 weeks compared to control group. Virtually, this study also discovered bigger pancreatic islets area but insignificantly different.

The bigger pancreatic islets in HC diet may be a compensation mechanism to protect the body from hyperglycemia. The larger pancreatic islets area produced more insulin leading to increase glucose uptake. In accordance with our result which the greatest pancreatic islets area in HC diet group, which also had a normal level of BG. In case, lengthy duration of treatment and then persistence of hyperglycemia, in series response, it would stimulate abundance free radical production, which triggers apoptosis [22].

CONCLUSION

Regular exercise controlled BG level on HC rats. It could be the involvement of increasing GLUT4 translocation. Ascorbic acid appeared to slow down glucose uptake, so BG level was higher compared to the
Table 3: The average of BG: Before (BG pre), after (BG post), and the difference (BG diff) during the treatment

<table>
<thead>
<tr>
<th>Groups</th>
<th>BG pre (mg/dL)</th>
<th>p value</th>
<th>BG post (mg/dL)</th>
<th>p value</th>
<th>BG diff (mg/dL)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>134±10.43</td>
<td>0.122</td>
<td>150±19.18</td>
<td>0.169</td>
<td>16±22.90</td>
<td>0.009</td>
</tr>
<tr>
<td>HCEx</td>
<td>137±13.06</td>
<td></td>
<td>134±13.90</td>
<td></td>
<td>-3±2.41</td>
<td></td>
</tr>
<tr>
<td>HCs</td>
<td>120±10.37</td>
<td></td>
<td>151±7.09</td>
<td></td>
<td>31±13.56</td>
<td></td>
</tr>
<tr>
<td>HCExs</td>
<td>142±19.83</td>
<td></td>
<td>142±9.00</td>
<td></td>
<td>14±14.12</td>
<td></td>
</tr>
</tbody>
</table>

*p=Mean±SD, n=5. BW: Body weight, HC: High-carbohydrate, HCEx: High-carbohydrate plus exercise, HCs: High-carbohydrate plus ascorbic acid, HCExs: High-carbohydrate plus exercise

Fig. 4: Islets pancreatic area in each group. No significantly different among groups (p=0.065)

Fig. 5: The area of islets of the pancreas (arrow) with hematoxylin-eosin staining. Microscope Nikon eclipse Ci, enlarged 400×, Optilab Viewer 2.2, Image raster 3.0. (a) high-carbohydrate (HC), (b) HC plus exercise, (c) HC plus ascorbic acid, HCEx and ascorbic acid

exercise group on HC rats. The combination of exercise and ascorbic acid seemed to have better effect on weight and BG. Yet, both exercise and ascorbic acid or their combined effect did not differ islet pancreatic area. Based on existing evidence, exercise and ascorbic acid combination may have a benefit effect for HC diet subject. However, further research needs to explore the certain mechanism such as insulin sensitivity, insulin receptor, GLUT, apoptosis, level of free radicals, and antioxidants.

CONFLICTS OF INTEREST

All authors have none to declare.

ACKNOWLEDGMENT

The authors thank Dr. Wahyu Wibowo, MSi (Institute Teknologi Sepuluh November, Surabaya), for his statistical analysis and the Faculty of Medicine, Universitas Airlangga, for supporting the grants from the Minister of Higher Education of Indonesia.

REFERENCES
