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ABSTRACT 

Objective: The objectives of this study were to formulate and characterize nanoparticles gel of timolol maleate (TM) by ionic gelation method using 

chitosan (CS) and sodium alginate (SA).  

Methods: Optimization was carried out by factorial design using Design Expert®10.0.1 software to obtain the concentration of CS, SA, and calcium 

chloride (CaCl2) to produce the optimum formula of TM nanoparticles. The optimum formula was characterized for particle size, polydispersity 

index, entrapment efficiency, Zeta potential, and molecular structure. Hydroxy Propyl Methyl Cellulose (HPMC) K15 was incorporated into optimum 

formula to form nanoparticles gel of TM and carried out in vivo release study using the Franz Diffusion Cell. 

Results: TM nanoparticles was successfully prepared with concentration of CS, SA, and CaCl2 of 0.01 % (w/v), 0.1 % (w/v), and 0.25 % (w/v), 

respectively. The particle size, polydispersity index, entrapment efficiency, and Zeta potential were found to be 200.47±4.20 nm, 0.27±0.0154, 

35.23±4.55 %, and-5.68±1.80 mV, respectively. The result of FTIR spectra indicated TM-loaded in the nanoparticles system. In vitro release profile 

of TM-loaded nanoparticles gel showed controlled release and the Korsmeyer-Peppas model was found to be the best fit for drug release kinetics.  

Conclusion: TM-loaded CS/SA nanoparticles gel was successfully prepared and could be considered as a promising candidate for controlled TM 

delivery of infantile hemangioma treatment. 
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INTRODUCTION 

Infantile hemangioma (IH) is the most prevalent vascular benign 

tumor in children with an incidence of about 4 to 10 % in the first 

year of life [1]. Although it will improve spontaneously, about 10 to 

20 % of infants who have IH require interventions to prevent and 

reduce complications associated with the proliferation phase [2]. In 

addition, IH has implications for parental psychology and visual 

disfigurement of children [3]. IH can occur in any part of the body, 

but the most often found in the head and neck area so that it can 

trigger deformity [4]. Topical TM is a promising alternative 

treatment for IH. The use of topical TM for IH treatment was first 

reported in 2010. Since then, many case reports and case series have 

demonstrated the efficacy of TM for the treatment of IH. TM can 

inhibit growth and promote the regression of IH [5]. However, TM 

has systemic absorption due to it is administered topically and then 

result in unwanted effects [6].  

The therapeutic effectiveness of topical dermatology formulation can 
be improved by nanotechnology-based delivery systems. 
Nanoparticles are of great interest in drug delivery due to their 
comparable size of the component in the human cell. Size matching is 
important in carrying out any activities in the biological system [7]. 
The successful implementation of nanoparticles for drug delivery 
depends on their ability to penetrate through several anatomical 
barriers, sustained release of their contents, and their stability in the 
nanometer size [8]. Polymeric nanoparticles are solid colloidal 
particles with a diameter ranging from 1 nm to 1000 nm. It is 
developed by using biodegradable and biocompatible polymers offer 
interesting options for controlled drug delivery and drug targeting [9].  

Biopolymers are polymer molecules that have been used extensively 

as biomaterials in drug delivery systems. The use of biopolymers has 

several advantages due to their properties, such as biocompatible, 

non-toxic, non-irritant, and can form the network of particles matrix. 

The preparation of biopolymers system uses double polymer which 

has opposite charges to form a matrix, so it can trap drug molecules. 

CS and SA are great combinations of biopolymers that can be used in 

drug delivery system [10]. Biopolymeric nanoparticles of CS and SA 

can deliver active ingredients with controlled drug release profile. 

Therefore, it can increase the efficacy of therapy, reduce systemic drug 

absorption, and reduce the frequency of administration [11]. 

CS/SA nanoparticles can be prepared by ionic gelation methods 

using ions of calcium. Mechanism of interaction is based on the 

negative charge of the uronic acid carboxylic groups of SA with the 

positive surface charge of the protonated amino groups of CS. The 

formation of CS/SA nanoparticles by the ionic gelation method 

produces a pre-gel that consists of very small aggregates of gel 

particles, which are then followed by the addition of a polycationic 

solution to form the polyelectrolyte complex. CS/SA nanoparticles 

can protect drug encapsulation from enzymatic degradation, drug 

delivery to target organs, prolong contact time of active ingredients 

with target epithelial cells, and control drug release [12].  

MATERIALS AND METHODS  

Materials 

TM was purchased from Octagon Chemical Limited (China), CS 
(molecular weight: 200 kDa to 500 kDa with 94.88 % of 
deacetylation degree) was purchased from local company 
Chimultiguna (Cirebon, Indonesia), SA was purchased from Sigma 
Aldrich (Darmstadt, Germany), CaCl2 was purchased from Merck 
(Germany), glacial acetic acid, hydrochloric acid, and sodium 
hydroxide were purchased from Merck (New Jersey, USA). 

Optimization of TM nanoparticles 

Optimization of TM nanoparticles was prepared based on the 23 

factorial design to select independent variables that were needed to 
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produce the optimum formula of TM nanoparticles. The selected 

three independent variables were the concentration percentage of 

CS, SA, and CaCl2.  

Characterization of TM nanoparticles 

Particle size, polydispersity index, and Zeta potential 

Particle size, polydispersity index, and Zeta potential were 

analysed by the method of dynamic light scattering (DLS). The 

TM nanoparticles was examined using Zetasizer Nano ZS 

(Malvern, UK) to determine the average of particle size and 

polydispersity index (distribution of particles). A certain amount 

of TM nanoparticles sample was dispersed in 5 ml of aquadest 

and then placed in disposable cuvette. Zeta potential of TM 

nanoparticles was also examined using Zetasizer Nano ZS 

(Malvern, UK) to determine surface charge of particles. A certain 

amount of TM nanoparticles was placed in dip cell carefully. 

Replications were done for each measurement of the same 

samples for 3 times. This instrument was controlled with 

Malvern software [13]. 

Entrapment efficiency 

Entrapment efficiency (EE) of TM nanoparticles was measured 

inderectly. Samples of TM nanoparticles were sentrifugated using 

Refrigerated Centrifuge (Velocity 18R) at 15 000 rpm for 30 min at 4 

°C to separate unloaded nanoparticles. The clear supernatant 

(unloaded nanoparticles) was analyzed using UV-Vis spectro-

photometer (Thermo Scientific Genesys 10S UV) at 296 nm. The 

following equation was used to calculate entrapment efficiency (EE) 

[12].  

EE (%) = 
total amount of TM�unloaded nanoparticle of TM in supernatant 

total amount of TM
 x 100 

Structure characterization 

Structure characterization of optimum formula of TM nanoparticles 

was analysed using Fourrier Transform Infra-Red (FTIR) 

spectrophotometer (Thermo Scientific Nicolet iS10, Madison, WI). 

This instrument was controlled with Omnic software. The 

measurements were done in middle infrared region of 4000-650 cm-

1. Replications were done for 3 times [13].  

Preparation of TM-loaded nanoparticles gel  

HPMC K15 was incorporated into optimum formula aqueous, and 

then stirred to form homogenous gel of TM nanoparticles. 

Furthermore, the physicochemical properties of nanoparticle gel of 

TM were evaluated.  

In vivo release study of TM-loaded nanoparticle gel  

In vivo release study of TM-loaded nanoparticle, gel was carried out 
using the Franz Diffusion Cell. This study was done through the 
dialysis membrane with a molecular weight cut-off 6 to 8 kDa. The 
phosphate buffer solution (pH = 5.8) was placed in receptor 
compartment. Next, 5 ml of nanoparticles gel loaded TM was placed in 
compartment donor on a dialysis membrane. The system of medium 
temperature was controlled at 37±0.5 °C and was stirred continuously 
using magnetic stirrer. Furthermore, at intervals times 1, 2, 3, 4, 5, 6, 7, 
8, 12, 16, 20, and 24 h, amount of 3 ml of the medium was removed 
and the same quantity was replaced. TM released from nanoparticles 
was analyzed using UV-Vis spectrophotometer (Thermo Scientific 
Genesys 10S UV) at 297 nm [14].  

Statistical analysis 

Statistical analysis was carried out using Design Expert®10.0.1 

software for optimum formula of TM nanoparticles and DDSolver 

program for release profile of TM-loaded CS/SA nanoparticles gel. 

 

RESULT AND DISCUSSION  

Particle size, polydispersity index, and entrapment efficiency  

 

Table 1: The result of an average of particle size (nm), polydispersity index, and entrapment efficiency (%) as the response of full factorial 

design experimental (n=8) 

Formulation codes Independent variables Responses 

CS  SA  CaCl2 Particle diameter (nm) Polydispersity index Entrapment efficiency (%) 

F1 -1 -1 -1 473.10±75.86 0.37±0.0582 33.71±4.73 

F2 +1 -1 -1 676.33±107.76 0.51±0.0489 33.20 ±7.16 

F3 -1  +1 -1 489.30±15.14 0.51±0.0934 39.01±2.86 

F4 +1 +1 -1 350.00±64.88 0.66±0.0345 37.59±3.86 

F5 -1 -1 +1 200.47±4.20 0.27±0.0154 35.23±4.55 

F6 +1 -1 +1 589.23±9.93 0.45±0.0326 33.71±3.99 

F7 -1 +1 +1 447.83±100.54 0.49±0.0965 35.63±4.77 

F8 +1 +1 +1 791.10±15.59 0.53±0.0349 39.77±3.01 

*Data from each response is presented in mean±SD (n=3). CS (-1 = 0.01 % w/v; +1 = 0,1 % w/v), SA (-1 = 0.1 % w/v; +1 = 0.5 % w/v), CaCl2 (-1 = 

0.05 % w/v; +1 = 0.25 % w/v)  

 

The particle size is a critical factor in the preparation of 

nanoparticles. The particle mean diameter obtained for all 

formulations were in range 200.47±4.20 nm to 791.10±15.59 nm 

(table 1). At the low concentration of CS (0.01 % w/v), SA (0.1 % 

w/v), and CaCl2, (0.05 % w/v) particles diameter were obtained in 

range 200.47±4.20 nm to 489.30±15.14, 200.47±4.20 nm to 

676.33±107.76 nm, and 350±64.88 nm to 676.33±107.76 nm, 

respectively. Meanwhile, at the high concentration of CS (0.1 % 

w/v), SA (0.5 % w/v), and CaCl2, (0.25 % w/v) particles diameter 

were obtained in range 350±64.88 nm to 791. 10±15.59 nm, 

350±64.88 nm to 791. 10±15.59 nm, and 200.47±4.20 nm to 

791.10±15.59 nm, respectively. Based on the polynomial term of full 

factorial design experimental and contour plot that was showed in 

fig. 1 predicted effect of each independent variables to particle size. 

The greater concentration of CS, SA, and CaCl2 was used in the 

formula; the greater particle size of nanoparticles was obtained. The 

main factor in nanoparticle formation is the tendency of functional 

groups of SA chains, especially carboxylic groups could form 

complex structures with calcium ions. These findings are in 

accordance with the previously study [15]. Daemi and co-worker 

reported that the high concentration of SA caused more functional 

groups to gather around calcium ions, then the more SA chains 

binded to form complexes with calcium cations.  

Thus, the more concentration of SA used in the formula the larger 

size of particle produced. Meanwhile, increasing the concentration of 
calcium ions caused less amount of polymer chains involved with a 

greater content of calcium cations. So that, increasing of CaCl2 led the 
smaller size of particle produced. Manish and co-workers were also 

reported that increasing the concentration of SA and CS increased 
particle size and ultimately decreased stability of nanoparticles due 

to aggregation and precipitation [16]. 

Polydispersity index describes the uniformity of particles size 

distribution produced. The smaller the polydispersity index obtained 
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the more uniform the particle size would be. Uniformity of the particle 

size distribution could affect the properties of particles produced due 

to it would not be easier to settle [17]. The polydispersity index 

value<0.5 indicates a narrow size distribution of particles. Meanwhile, 

polydispersity index value>0.5 indicates a broad particle size 

distribution of particles. Increase of polidispersity index could lead 

aggregation due to instable system [18]. 

The polydispersity index obtained for all formulations was in range 

0.27±0.0154 to 0.66±0.0345 (table 1). At the low concentration of CS 

(0.01 % w/v), SA (0.1 % w/v), and CaCl2, (0.05 % w/v) 

polydispersity index of nanoparticles were obtained in range 

0.27±0.0154 to 0.51±0.0934, 0.27±0.0154 to 0.51±0.0489, and 

0.37±0.0582 to 0.66±0.0345, respectively. Meanwhile, at the high 

concentration of CS (0.1 % w/v), SA (0.5 % w/v), and CaCl2, (0.25 % 

w/v) polydispersity index of nanoparticles were obtained in range 

0.45±0.0326 to 0.66±0.0345, 0.49±0.0965 to 0.66±0.0345, and 

0.2±0.0154 to 0.53±0.0349, respectively. Based on polynomial term 

of full factorial design experimental and contour plot that was 

showed in fig. 2 predicted the effect of each independent variables to 

polydispersity index. The greater concentration of CS and SA were 

used in the formula the greater polydispersity index of nanoparticles 

was obtained. Meanwhile, the greater concentration of CaCl2 the 

smaller polydispersity index was obtained.  

Entrapment efficiency is an important parameter in the 

development of material based on the nanotechnology drug delivery 

system. The percentage of entrapment efficiency can provide an 

overview of the effectiveness of active binding compounds by 

polymer complexes in the nanoparticles system [19]. The 

percentage of entrapment efficiency obtained for all formulations 

was in range 33.20±7.16 % to 39.77±3.01 % (table 1). At the low 

concentration of CS (0.01 % w/v), SA (0.1 % w/v), and CaCl2, (0.25 % 

w/v) percentage of entrapment efficiency of nanoparticles were 

obtained in range 33.71±4.73 % to 39.01±2.86 %, 33.20±7.16 % to 

35.23±4.55 %, and 33.20±7.16 % to 39.01±2.86 %, respectively. 

Meanwhile, at the high concentration of CS (0.1 % w/v), SA (0.5 % 

w/v), and CaCl2, (0.25 % w/v) percentage of entrapment efficiency of 

nanoparticles were obtained in range 33.20±7.16 % to 39.77±3.01 

%, 35.63±4.77 % to 39.77±3.01 %, and 33.71±3.99 % to 39.77±3.01 

%, respectively. Based on polynomial term of full factorial design 

experimental and contour plot that was showed in fig. 3 that 

predicted effect of each independent variables to percentage of 

entrapment efficiency. The greater concentration of CS, SA, and CaCl2 

was used in the formula the greater entrapment efficiency of 

nanoparticles was obtained. It is clear that increase in polymer 

concentration lead increases the drug entrapment efficiency [20].  

The particle size, polydispersity index (PDI), and entrapment 

efficiency obtained through optimization of 8 formulas were used to 

generate the optimum formula of nanoparticles. Based on prediction 

of factorial design as a statictical tool, Formula 5 was selected as the 

optimum formula with concentration of CS, SA, and CaCl2 0.01 % 

(w/v), 0,1 % (w/v), and 0.25 % (w/v), respectively.  

 

 

Fig. 1: The contour plot of particle size 

 

Fig. 2: The contour plot of PDI 

 

 

Fig. 3: The contour plot of entrapment efficiency 

 

Zeta potential  

Zeta potential describes the surface charge of particles. Zeta potential 

measurement is an important factor in determining the stability of the 

nanoparticles [21]. Zeta potential can describe the stability of 

nanosystem due to aggregation probability based on the Derjaguin, 

Landau, Verwey, dan Overbeek (DLVO) theory. The Van der Waals 

attraction and the electrostatic repulsion force are two forces that 

contribute to the stability of system. A high value of Zeta potential 

indicates a high repulsion force among particles due to electrostatic 

force, which is related proportionally to the Zeta potential of particles 

obtained. Thus, a high value of zeta potential can lead to a more stable 

of nanosystem [18]. Otherwise, a low value of Zeta potential may lead 

dispersion system to break and particle aggregation occurs. It is due to 

the attraction is greater than the repulsion force [20].  

The Zeta potential that was produced by the optimum formula was 

found to be–5.68±1.80 mV and had a negative charge (fig. 4). This 

was related to the formation mechanism of nanoparticles through 

ionic gelation, due to the positive charge of the protonated 

NH3
+groups of CS were neutralized through electrostatic interaction 

with the negative charge of polymeric SA and TM. The surface 

charge of particles was negative due to the electric potential of 

particles. It was influenced by the composition of the particles and 

the medium dispersed [20]. This result was accordance with the 

previously study [22]. The values of Zeta potential were highly 

influenced by the SA/CS ratio due to the Zeta potential of the SA/CS 

nano reservoir system was dependent on the availability of total 

protonated NH3
+groups of CS and their neutralization with 

carboxylic groups of SA. When SA exceeded CS, the formulations 

showed negatively charged Zeta potential, which indicated 

carboxylic groups of SA were not sufficiently neutralized by the 

protonated NH3
+ groups of CS. It was to be noted that the higher 
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percentages of SA revealed a negatively charged Zeta potential. 

Morsi and co-workers reported that the nanoparticles with small 

value of Zeta potential (-3.7 mV) despite having higher SA content 

and this probably because of the amounts of CS and CaCl2 were still 

insufficient to interact with all carboxylic groups of SA. However, 

increasing the concentration of CaCl2 or increasing the concentration 

of CS shifted the Zeta potential to positive values. These findings 

were also in accordance with the previously reported data [23]. 

Huang and co-workers reported that the negative value for Zeta 

potential of TM liquid crystalline nanoparticle. 

FTIR analysis 

The FTIR spectra could be used to get information about molecular 
structure from the vibration of functional groups at the certain 
wavenumber [24]. The FTIR spectra of TM nanoparticles were 
showed in fig. 5. 

 

 

Fig. 4: Zeta potential distribution histogram showing–5.68±1.80 mV Zeta potential 

 

 

Fig. 5: The spectra of TM nanoparticles, CS, SA, and TM 

 

The FTIR spectra of TM nanoparticles in fig. 5 indicate the 

interaction among nanoparticles components. CS indicates a broad 

band appearing at 3354 cm-1due the stretching vibrations of O-H/N-

H. The peak at 2873 cm-1is due C-H stretching vibrations. The band 

for C≡C stretching vibrations appears at 2113.39 cm-1. The weak 

peak at 1645 cm-1is due to C=N stretching vibrations. The peak at 

1419.57 cm-1is due to O-H bending vibrations. The C-O stretching 

vibrations appears at wavenumber 1149.91 cm-1, 1061.63 cm-1, and 

1025.46 cm-1, respectively. The peak at 894.14 cm-1 is due to C-H 

bending vibrations. Meanwhile, SA indicates a broadband appearing 

at 3357 cm-1due to O-H stretching vibrations. The band for C≡C 

stretching vibrations appears at 2099.39 cm-1. The peak at 1597.67 

cm-1 is due to C=C stretching vibrations. The peak at 1409.45 cm-

1appears due to O-H bending vibrations. The C-O stretching 

vibrations appears at wavenumber 1295.48 cm-1 and 1086.80 cm-1, 

respectively. The peak at 882.52 cm-1 is due to C-H bending 

vibrations.  

TM indicates a band appearing at wavenumber 3283.15 cm-1 due to 

O-H stretching vibrations. The C-H stretching vibrations appears at 

wavenumber 3039.76 cm-1, 2964.64 cm-1, 2890.35 cm-1, and 2852.60 

cm-1, respectively. Meanwhile, the C-H bending vibrations appears at 

wavenumber 1980.62 cm-1. The peaks at wavenumber 1702.20 cm-

1is due to C=O stretching vibrations. The C=N stretching vibrations 

appears at wavenumber 1618.42 cm-1. There are peaks at 1489.02 

and 1448.64 cm-1due to the N-H bending and O-H bending 

vibrations. The peak at wavenumber 1380.43 cm-1is due S-N 

vibrations. There are peaks indicate the C-O stretching vibrations at 

wavenumber 1292.88 cm-1, 1262.02 cm-1, 1227.27 cm-1, 1197.37 cm-

1, 1054.22 cm-1, respectively. The C=C bending vibrations appears at 

wavenumber 988.17 cm-1, 954.49 cm-1, 890.02 cm-1, 861.08 cm-1, and 

806.50 cm-1, respectively.  

After loading TM in the nanoparticles, there is broadband at 

wavenumber 3354.92 cm-1 due to O-H stretching vibrations. The 

band for C≡C stretching vibrations appears at wavenumber 2106.60 

cm-1. Both of these peaks are similar to the peak of CS and SA. There 

is a sharp peak at wavenumber 1603.44 cm-1 due to C=N stretching 

vibrations. The peaks at 1416.91 cm-1 due to O-H bending vibrations. 

The peaks indicate the C-O stretching vibrations at wavenumber 

1076.31 cm-1 and 1026.10 cm-1, respectively. These peaks are also 

simillar to the peak of CS and SA. There are peaks at wavenumber 

888.67 cm-1 and 817.51 cm-1 due to C=C bending vibrations. These 

peaks are simillar to peak of TM. These results confirmed with the 

characterization of nanoparticles component, so that indicated TM 

loaded in the nanoparticles system.  
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Ionic interaction involved an ionic cross-linking between cations on 

the backbone of CS and anion of SA [25]. CaCl2 was used as stabilizer, 

which contributed to the formation of the particle core. Although SA 

can be complex with CS alone and can form nanoparticles through 

formation of a simple polyelectrolyte complex, the formation of a 

pre-gel phase between Ca2+ions and SA allows the formation of 

nanoparticles with increased compact structure [22]. Ionic 

interaction of TM, CS, SA, and CaCl2 was showed in fig. 6. 
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Fig. 6: Ionic interaction of TM, CS, SA, and CaCl2 

 

 

Fig. 7: The release profile of TM-loaded nanoparticles gel in PBS (data is presented in mean±SD (n=3)) 

 

In vitro release study 

The release profile of TM from nanoparticles gel in PBS was showed 

in fig. 7. 

Fig. 7 showed the controlled release patern of TM from 

nanoparticles gel and it showed % drug release 41.21±1.94 % in 24 

h. The in vitro release profile exhibited a controlled release phase 

lasting for long period. The controlled release phase may be 

attributed to the swelling or degradation of the polymer, which leads 

to the formation of pores within the polymeric matrix [26]. This 

result was also in accordance with the previously study that 

reported drug release was sustained for a long period which may be 

due to the hydration capability of CS which on coming in contact 

with dissolution medium result to the formation of gelatinous mass 

that act as a retardant material for the drug to get diffused out [27].  

The data obtained from in vitro release study of TM from CS/SA 

nanoparticles gel was further analysed with different kinetic 

models (zero orde, first orde, Higuchi, Korsmeyer-Peppas, and 

Hixson-Crowell). Hence, the Korsmeyer-Peppas model was found 

to be the best fit for drug release kinetics. Korsmeyer-Peppas is a 

mathematical model that describes drug release from polymeric 

system [28]. The finding was also in accordance with the 

previously study [29, 30]. These studies reported that Korsmeyer-

Peppas is the best fit of drug release from nanoparticle polymeric 

system. Mathematical Model in TM Release Kinetics was showed in 

table 2. 
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Table 2: Mathematical model in TM release kinetics 

Mathematical model in drug release kinetics  Parameter Number 

1 2 3 

Zero order K0 1.916  2.176  1.878  

R2 adj 0.9138  0.8569  0.9171  

AIC 69.3402  78.1404  67.8008  

MSC 2.1397  1.6045  2.1689  

First Order K1 0.024  0.028  0.023  

R2 adj 0.9649  0.9387  0.9639  

AIC 57.6507  67.1089  56.9825  

MSC 3.0389  2.4530  3.0011  

Higuchi KH 7.327  8.427  7.193  

R2 adj 0.9116  0.9341  0.9241  

AIC 69.6712  68.0689  66.6619  

MSC 2.1142  2.3792  2.2565  

Korsmeyer-Peppas 

 

KK-P 4.108  5.650  4.133  

R2 adj 0.9741  0.9677  0.9826  

AIC 54.5676  59.6611  48.3646  

MSC 3.2761  3.0259  3.6640  

N 0.727  0.658  0.718  

Hixson-Crowel KH-C 0.007  0.009  0.007  

R2 adj 0.9516  0.9169  0.9515  

AIC 61.8455  71.0739  60.8425  

MSC 2.7162  2.1480  2.7042  

*Constant release of drug (K). Coefficient of Determination (R2 adjusted) expressed as the relationship between the data obtained from TM observed 

release study and the predicted model. Akaike Information Criterion expressed as the parameters used to select the appropriate model by 

comparing the values of the models (the selection of the appropriate model is based on the smallest for AIC value). Model Selection Factor (MSC) 

expressed as compatibility between the model and data (the selection of the appropriate model is based on the highest for MSC value). Data from 

each parameter is presented in replication (n=3).  

 

CONCLUSION 

We have prepared successfully TM-loaded nanoparticles gel by ionic 

gelation using biopolymer CS and SA. The best formula was prepared 

with concentration of CS, SA, and CaCl2 of 0.01 % w/v, 0.1 % w/v, and 

0.25 % w/v, respectively. The particle size, polydispersity index, 

entrapment efficiency, and Zeta potential were found to be 

200.47±4.20 nm, 0.27±0.0154, 35.23±4.55 %, and-5.68±1.80 mV, 

respectively. The result of FTIR spectra indicated TM loaded in the 

nanoparticles system. In vitro release profile of TM-loaded 

nanoparticles gel showed controlled release and Korsmeyer-Peppas 

model was found to be the best fit for drug release kinetics. Finally, we 

concluded that TM-loaded CS/SA nanoparticles gel can be considered 

as a promising candidate for controlled TM delivery of IH treatment. 
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