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ABSTRACT 

Objective: The aim of the present work is to fabricate curcumin (CUR) encapsulated microbeads in the polymer matrix of sodium alginate 
(SA)/poly(vinylpyrrolidone)-co-vinyl acetate (PVP-co-VAc) intercalated with magnetite nanoparticles (MNPs) using glutaraldehyde (GA)/calcium 
chloride CaCl2 as the crosslinker.  

Methods: Magnetite nanoparticles (MNPs) were synthesized by a modified co-precipitation method. Curcumin encapsulated SA/PVP-co-VAc 
microbeads, intercalated with MNPs were prepared by simple ionotropic gelation technique. The formation of microbeads and uniform distribution 
of curcumin were characterized using spectroscopic methods. In addition, swelling and drug release kinetic studies of the microbeads were 
performed in simulated intestinal fluid (pH 7.4) and simulated gastric fluid (pH 1.2) at 37 °C. 

Results: Microbeads formation was confirmed by Fourier Transform Infrared (FTIR). Differential Scanning Calorimetry (DSC) studies reveal that 
the peak at 181 °C of CUR was not observed in CUR loaded microbeads, which confirms that CUR was encapsulated at the molecular level in the 
polymer matrix. The X-Ray diffraction (X-RD) diffractograms of CUR shows 2Ө peaks between 12-28 °, which indicated the crystalline nature of 
CUR, these peaks are not found in CUR loaded microbeads, suggesting that the drug has been molecularly dispersed in the polymer matrix. The X-RD 
2Ө peaks of MNPs are observed in the MNPs loaded microbeads, which confirms that MNPs are successfully loaded in the microbeads. The swelling 
studies and in vitro release studies were performed at pH 1.2 and 7.4. The results reveal that at pH 7.4 highest swelling and release was observed, 
which confirms that the developed microbeads are pH sensitive and are suitable for intestinal drug delivery. The drug release kinetics fit into the 
Korsmeyer-Peppas equation, indicating non-Fickian diffusion.  

Conclusion: The results concluded that the present system as dependent on pH of the test medium and hence suggest suitability for intestinal drug delivery. 
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INTRODUCTION 

The best acceptable route for drug administration is an oral route, due 
to ease of administration and gastrointestinal physiology provides 
additional flexibility in the design of dosage form compared to other 
routes [1]. Normally, conventional oral drug administration does not 
provide a controlled release or target specificity [2]. Further, it has 
several drawbacks such as poor patient compliance, frequent dosing, 
poor bioavailability etc. To overcome these problems novel drug 
delivery systems (NDDS) such as controlled/sustained drug release 
systems with IPNs(Interpenetrating polymer networks) have been 
evolved [3, 6]. Polymers play a vital role in the development of 
controlled drug delivery systems because of their favourable and 
flexible features such as biocompatibility, non-toxic, biodegradability 
and also it can be easily produced at industrial scale [4]. 

Sodium alginate (SA) is anionic polysaccharide, composed of two 
different kinds of hexuronic acid residues such as β-D-mannuronic acid 
(M) and α-L-guluronic acid (G) arranged as random or in an alternating 
manner [5, 7]. It has several biomedical and biotechnological 
applications due to its specific properties such as hydrophilicity, 
biodegradability, biocompatibility and non-toxicity [8-10] 

Poly(vinylpyrrolidone)-co-vinyl acetate (PVP-co-VAc) is a water 
soluble block copolymer consisting of both hydrophobic and 
hydrophilic components in its structure, which facilitates the 
increased solubilisation of drugs [11]. The presence of hydrophobic 
part in PVP-co-VAc, acts as a good drug carrier for hydrophobic or 
less water-soluble drugs. The applications of PVP-co-VAc in 
biomedical applications are scanty. Previously Bailly et al., [12] 
reported that Poly(N Vinylpyrrolidone)-block-poly(vinyl acetate) 
(PVP-b-PVAc) is a good interesting candidate for the delivery of 
hydrophobic drug (clofazimine). 

Curcumin (CUR), a polyphenol of turmeric (diferuloylmethane), a 
natural bioactive compound, is obtained from Curcuma longa [13]. It 
has anti-inflammatory, anti-oxidant, antimicrobial, antispasmodic 
and antiproliferative activity against different cancer cells [14-16]. 
However, its biomedical applications are very scanty due to low 
aqueous solubility, limited bioavailability and potentially lipophilic 
characteristics [17], which have limited in vivo efficacy of curcumin 
[18]. To overcome this problem, various types of micro and 
nanocarriers have been proposed, such as micelles, nanoparticles, 
and iron oxide particles [19]. 

Magnetite nanoparticles (MNPs) are increasingly being considered for 
a number of biomedical applications due to their inherent 
superparamagnetic properties, ultra-fine size and biocompatibility 
[20-22]. The functional properties of the MNPs can be tailored for 
specific biological functions, such as drug delivery [23], hyperthermia 
or magnetic targeting [24-26], magnetic resonance imaging (MRI) [27-
29]. Among the MNPs, iron oxide nanoparticles (magnetite ϒ-Fe2O3 or 
magnetite Fe3O4) are the most popular formulations. The large surface 
to volume ratio of MNPs renders relative high loading in 
biocompatible materials [28]. Owing to nanosize, MNPs can 
accumulate in tumor cells by the enhanced permeability and retention 
(EPR) effect [30]. Further malignant tumors have high heat sensitivity 
than normal tissues in the temperature range of 41-47 °C and the 
property is exploited for chemotherapeutic applications [31]. MNP 
drug delivery systems have incorporated small traditional molecules 
like paclitaxel, doxorubicin and methotrexate [22]. Natural 
macromolecules like curcumin have not been researched earlier with 
MNP combination for cancer therapy. 

In the current work, SA/PVP-co-VAc microbeads were prepared by a 
simple gelation technique. The microbeads were characterized using 
fourier transform infrared spectroscopy, differential scanning 
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calorimetry, X-ray diffraction and scanning electron microscopy. In 
addition, swelling studies and drug release kinetics of the 
microbeads have been reported. The main objective of the present 
work is to encapsulate the curcumin molecules intercalated with 
magnetite nanoparticles into SA/PVP-co-VAc microbeads and to 
study the effect of MNPs on controlled drug delivery of curcumin for 
novel chemotherapeutic applications. 

MATERIALS AND METHODS 

Materials 

Poly (vinylpyrrolidone)-co-vinylacetate, ferrous chloride 
(FeCl2.4H2O), and tetramethylammonium hydroxide were purchased 
from Sigma–Aldrich (USA). Sodium alginate, glutaraldehyde (GA), 
ferric chloride (FeCl3.6H2O), and calcium chloride were purchased 
from Sd. Fine chemicals, Mumbai, India. Curcumin was purchased 
from Loba Chemicals, Mumbai, India. Water used was of high purity 
grade after double distillation. 

Methods 

Synthesis of magnetite nanoparticles (MNPs) 

Magnetite nanoparticles (MNPs) were synthesized by modified co-
precipitation method [32] using ferrous and ferric salts. 5.2 g of 
FeCl3.6H2O and 2.0 g of FeCl2.4H2O were weighed and transferred 

into 250 ml round bottom flask and 100 ml of deoxygenated distilled 
water was added and stirred at 300 rpm for 2 h under nitrogen 
atmosphere. Then ammonium hydroxide solution was added slowly 
to the reaction mixture to raise the pH to 8.0. Then the solution 
turned from brown to black colour, which indicates the formation of 
magnetite nanoparticles. The magnetite nanoparticles formed were 
separated and washed with distilled water followed by 1 ml of 
tetramethylammonium hydroxide and then dried in air. Finally the 
developed MNPs were stored in airtight containers. 

Synthesis of SA/PVP-co-VAc/MNPs microbeads 

The magnetite nanoparticles loaded microbeads were prepared using 
simple ionotropic gelation technique. Exactly a weighed amount of 
magnetite nanoparticles (table 1) were added to 5 ml of double-distilled 
water and placed for sonication for 5 min. The resulting solution was 
gradually added to a blend ratio of SA/PVP-co-VAc (table 1), followed by 
addition of drug and GA (table 1) and stirred for 3 h.  

The resulting solution is placed for sonication for 10 min to get a 
homogeneous solution. The resulting homogeneous suspension was 
added dropwise into CaCl2 solution under constant stirring at room 
temperature; the spherical beads formed instantly were kept aside for 
20 min. The obtained wet beads were collected by decantation, washed 
with double distilled water to remove the drug attached on the bead 
surface, and finally were dried in air overnight at room temperature. 

 

Table 1: Formulation and composition of all samples 

Formulation code Polymers (%w/v) MNPs (mg) Drug (mg) GA (ml) 
SA PVP-co-VAc 

F1 80 20 20 100 1 
F2 60 40 20 100 1 
F3 40 60 20 100 1 
F4 80 20 20 150 1 
F5 80 20 20 200 1 
F6 80 20 20 100 2.5 
F7 80 20 20 100 5 
F8 80 20 00 00 1 

(Results are expressed as mean±SD, n=3) 
 

Characterization methods 

Fourier transform infrared (FTIR) spectral analysis 

Fourier Transmission infrared spectra of CUR, MNPs, placebo 
microbeads, and drug loaded microbeads were recorded using 
FTIR spectrophotometer (model Bomem MB-3000, with Horizon 
MBTM FTIR software) in the wavelength range of 400-4000 cm-1 
to find out the possible chemical interactions between polymers 
and drug. 

Differential scanning calorimetry (DSC) 

DSC curves of CUR, MNPs, placebo microbeads, and drug-loaded 
microbeads were recorded using thermogravimetric analyzer 
Rheometric Scientific, Model DSC-SP, UK. The analysis was 
performed by heating each sample from 40 °C to 600 °C at the 
heating rate of 10 °C/min under nitrogen atmosphere. 

Thermogravimetric analysis (TGA) 

Thermogravimetric analysis of CUR, MNPs, placebo microbeads, and 
drug-loaded microbeads were carried out using thermogravimetric 
analyzer Rheometric Scientific, Model DSC-SP, UK. About 10-12 mg 
of sample was placed into alumina crucible and the thermograms 
were recorded between 40 °C to 600 °C at a heating rate of 10 
°C/min under nitrogen atmosphere. 

X-Ray diffraction (X-RD) analysis 

The X-ray diffraction of CUR, placebo microbeads, drug-loaded 
microbeads, MNPs and MNPs/drug-loaded microbeads were 
performed by a wide-angle X-ray scattering diffractometer 
(Panalytical X-ray Diffractometer, model-X’pert Pro) with Cu-K α 
radiation (λ= 1.54060) at a scanning rate of 10°/min to determine 
the crystallinity. 

Scanning electron microscopy (SEM) analysis 

The morphological characterization of microbeads and MNPs was 
observed using SEM (JOEL MODEL JSM 840A) with an accelerated 
voltage of 20 kV. 

Swelling measurements 

The swelling behavior of different formulations was determined 
gravimetrically under both pH 1.2 and pH7.4. 

Encapsulation efficiency 

The percentage encapsulation efficiency of CUR loaded microbeads 
was estimated according to the formula and method reported in 
previous literature [30]. A known mass of drug-loaded microbeads 
(20 mg) was immersed into 100 ml of phosphate buffer solution (pH 
7.4 containing 5 % absolute ethyl alcohol) for 24 h and then 
vigorously stirred to ensure the complete extraction of CUR from the 
microbeads. Supernatants were filtered and analyzed by ultraviolet 
(UV) spectrophotometer (LabIndia, Mumbai, India) at the λmax of 470 
nm with placebo microbeads as blank correction. Concentration of 
drug was determined using calibration curve constructed by series 
of CUR standard solutions and the percentage of encapsulation 
efficiency was determined using the following formula. 

Encapsulation efficiency percentage (EE %) = 
Wt

Wi
 × 100 

Where Wt is the total amount of drug in the microspheres and Wi is 
the total quantity of drug added initially during the preparation. 

In vitro drug release studies 

In vitro drug release studies for different formulations were performed 
using a dissolution tester containing eight baskets at 37 °C in 900 ml 
of phosphate buffer solution (pH-7.4) at a rotation speed of 50 rpm 
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to replicate intestinal atmosphere. The accurately weighed 100 mg 
of microbeads were used for the study. At regular intervals of time, 5 
ml aliquot samples were withdrawn and analyzed using UV 

spectrophotometer at fixed λmax value of 470 nm, and the released 
drug amount was obtained using concentration versus absorbance 
calibration curve. 

 

RESULTS AND DISCUSSION 

FTIR analysis 

 

Fig. 1: FTIR spectra of CUR (a), placebo microbeads (b), drug-loaded microbeads (c), MNPs (d) and MNPs-drug-loaded microbeads (e) 

 

The FTIR spectral studies were used to confirm the formation of 
microbeads. FTIR spectra of CUR (a), placebo microbeads (b), drug 
loaded microbeads (c), MNPs (d) and drug-loaded MNPs microbeads 
(e) are shown in fig. 1. FTIR spectra of placebo microbeads (fig. 1b), 
a peak observed at 3341 cm-1 is responsible for O-H stretching 
frequency, a peak at 1609 cm-1 indicates C=O stretching frequency. 
In addition to the above, peaks at 1387 cm-1 and 1121 cm-1 
corresponds to C-N stretching and bending vibrations. The FTIR 
spectra of CUR (fig. 1a), shows a broad peak at 3493 cm-1 assigned to 
O-H stretching frequency of phenolic group. The peak at 2923 cm-1 
corresponds to C-H stretching vibrations, the peaks at 1596 and 
1513 cm-1 were assigned to stretching vibration of benzene ring 
skeleton and mixed (C=O) and (C=C) vibration respectively. The 
band at 1272 cm-1 corresponds to Ar-O stretching vibrations [33]. 
On comparing the drug-loaded microbeads (fig. 1c) with placebo 
microbeads (fig. 1b) a new peak was observed in the drug-loaded 
microbeads at 1029 cm-1 and also a broad peak appeared at 1601 
cm-1 due to the carbonyl group of CUR, which confirmed that the 
drug molecules are successfully encapsulated in the microbeads. The 
FTIR spectra of MNPs (fig. 1d) show a peak at 565 cm-1 due to Fe-O 
stretching frequency, peaks at 1598 cm-1 and 3421 cm-1 are due to 
bending and stretching vibrations of O-H group which are attached 
to iron atoms on the surface [34]. In the case of MNPs-drug-loaded 
microbeads (fig. 1e), similar to drug-loaded microbeads all peaks 
were observed in MNPs-drug-loaded microbeads, along with a new 
peak observed at 611 cm-1 due to the presence of Fe-O group, which 
confirms that the MNPs are successfully loaded in the microbeads. 

DSC analysis 

Typical DSC thermograms of CUR (a), placebo microbeads (b), drug-
loaded microbeads (c), MNPs-drug-loaded microbeads (d) and MNPs 
(e) are depicted in fig. 2. 

The DSC curve of placebo microbeads (fig. 2b) show two 
endothermic peaks at 87 and 205 °C. The DSC curve of CUR (fig. 2a) 
shows a endothermic peak at 181 °C due to its melting, whereas no 

such peak was observed in drug-loaded microbeads (fig. 2c), which 
confirms that the drug has been molecularly dispersed in the 
microbeads. DSC curve of MNPs (fig. 2e) show an exothermic peak at 
572 °C due to phase transition from γ-Fe2O3 to α-Fe2O3, whereas no 
such peak was observed in MNPs-drug-loaded microbeads (fig. 2d), 
which indicates the stability of MNPs-drug-loaded microbeads due 
to the interaction between γ-Fe2O3 and polymer matrix [35]. 

 

 

Fig. 2: DSC curves of CUR (a), placebo microbeads (b), drug loaded 
microbeads (c), MNPs-drug loaded microbeads (d) and MNPs (e) 

 

TGA analysis 

TGA thermograms of CUR (a), placebo microbeads (b), drug-loaded 
microbeads (c), MNPs-drug-loaded microbeads (d) and MNPs (e) are 
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displayed in fig. 3. The TGA curve of CUR (fig. 3a) showed a weight 
loss between the ranges of 50-204 °C due to loss of residual water, 
followed by a weight loss at 210-398 °C due to the decomposition of 
CUR. The TGA curve of placebo microbeads (fig. 3b) shows three 
weight loss steps. The first step was observed in the region of 50-
193 °C with weight loss of 23 % due to evaporation of water 
physically adsorbed on the polymer matrix. The second weight-loss 
step was observed in the range of 197-313 °C with weight loss of 26 
% due to the decomposition of polymer matrix and the last step with 
weight loss of 19 % in the region of 317-600 °C due to the complete 
decomposition of polymer matrix. The TGA curve of drug-loaded 
microbeads (fig. 3c) also shows three consecutive weight loss steps. 
The first weight loss of 22% was found in the region of 50-190 °C 
and is attributed to the loss of water bounded on the surface of 
polymer matrix. The second and third steps were observed in the 
range of 195-305 °C and 309-600 °C with a weight loss of 30 and 20 
% respectively due to the decomposition of the polymer matrix. TGA 
curve of MNPs (fig. 3e) shows a weight loss of 7% over the range of 
50-600 °C indicating that no significant weight loss took place. In the 
case of MNPs-drug loaded microbeads (fig. 3d), TGA curves show 
three weight loss steps. The first weight loss step was observed over 
the range of 50-191 °C with weight loss of 34% due to the loss of 
free and bound water from the polymer matrix. The second and 
third weight loss steps was found in the region of 197-301 °C and 
305-600 °C, with weight loss of 20 and 16 % due to the 
decomposition of polymer matrix. From the TGA results, it is 
suggested that the drug-loaded microbeads and MNPs-drug-loaded 
microbeads show an overall improvement in the thermal stability of 
microbeads. 

SEM analysis 

The topographical images of microbeads and MNPs are investigated 

by SEM analysis and the images are displayed in fig. 4. The SEM 
images of microbeads (fig. 4a and 4b recorded at 85 and 330 
resolutions respectively) reveal that they have a rough surface with 
porous nature. The average diameter of the microbeads obtained 
from the SEM was in the range of 1080 to 1030 μm. The fig. 4c and 
4d recorded at 25,000 resolution reveals that the synthesized 
magnetite particles are in the range of nanometers. This confirmed 
that the developed magnetite particles are MNPs. Further it was 
confirmed by X-RD, DSC and TGA analysis. 

 

 

Fig. 3: TGA curves of CUR (a), placebo microbeads (b), drug 
loaded microbeads (c), MNPs-drug-loaded microbeads (d) and 

MNPs (e) 

 

 

Fig. 4: SEM analysis of drug and MNPs loaded microspheres (a, b), synthesized magnetic nanoparticles (c, d) 
 

X-RD analysis 

X-RD patterns of CUR (a), MNPs (b), placebo microbeads (c), drug-loaded 
microbeads (d) and MNPsdrug-loaded microbeads (e) are displayed in 
fig. 5. The X-RD pattern of MNPs (fig. 5b) show a peak at 35.70° due to 
the crystalline plane with miller indices of (3 1 1). The peaks at 30.33°, 
43.44°, 54.23°, 57.31° and 62.91° match the magnetite diffraction pattern 
reported by Banerjee et al., [36]. The results suggest that the developed 

MNPs were Fe3O4 nanoparticles. The X-RD pattern of CUR (fig. 5a) shows 
the most intensive peaks in the 2θ region of 12-28°, suggesting its 
crystalline nature. Whereas these peaks have not appeared in drug-
loaded microbeads (fig. 5d), suggesting that the drug has been 
molecularly dispersed in the polymer matrix. X-RD pattern of MNPs-
drug-loaded microbeads (fig. 5e) show peaks similar to that of MNPs at 
30.21°, 35.89°, 57.51° and 62.97° indicating that the MNPs are 
successfully loaded in the microbeads. 
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Fig. 5: X-RD patterns of CUR (a), MNPs (b), placebo microbeads (c), drug loaded microbeads (d) and MNPs-drug loaded microbeads (e) 

 

Encapsulation efficiency  

The percentage encapsulation efficiency of developed CUR 
encapsulated microbeads was found to be between 39 % and 50 % 
(table 2). Three different concentrations of CUR, i.e., 100, 150, and 
200 mg were encapsulated with constant amounts of MNPs and GA. 
As the % of drug loading is increased, % EE also increased from 45 
to 48%; this trend may be due to higher drug concentration, which 
causes entrapment of more number of drug molecules in the 
polymeric matrix leading to higher %EE. With increasing crosslinker 

concentration, % EE decreased. For instance, with an increase of GA 
from 1 to 5 ml, % EE decreased from 45 to 39%. Such a decrease in 
trend could be attributed to decrease in free volume spaces in the 
polymeric matrix due to increased crosslinking density, thereby 
reducing encapsulation efficiency. Further with increasing the % of 
PVP-co-VAc from 20 to 60% (The SA percentage decreased from 80 
to 40%) the % EE increased from 45 to 50, this may be due to more 
interactions between hydrophobic groups of CUR and PVP-co-VAc, 
whereas in SA the presence of ionic COO-groups inhibited such 
interactions.

 

Table 2: Encapsulation efficiency (% EE) of all samples, (Results are expressed as mean±SD, n=3) 

S. No. Formulation code % EE 
1 F1 45±1.3 
2 F2 47±0.8 
3 F3 50±1.4 
4 F4 46±1.1 
5 F5 48±1.5 
6 F6 42±1.3 
7 F7 39±0.6 

 

 

Fig. 6a: Equilibrium swelling ratio for all profiles at pH 7.4, (Results are expressed as mean±SD, n=3) 
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Swelling studies 

Swelling properties play a crucial role in biomedical applications such 
as diffusion of drugs, nutrients and other water-soluble metabolites 
and also for controlled release in drug delivery systems. In order to 
find out the suitability of microbeads for gastrointestinal drug 
delivery, swelling studies were performed under both pH 7.4 
(simulated intestinal fluid) and 1.2 (simulated gastric fluid) at 37 °C 
and the results are displayed in fig. 6a and 6b, respectively. The 

swelling results indicate that the swelling degree is high in the case of 
pH 7.4 rather than in the case of pH 1.2. This is because, in lower pH 
(1.2),–COOH groups of polymer molecule forms a hydrogen bonding 
with the solvent molecules, which results in the shrinking of polymer 
network consequently swelling degree decreases. Whereas at higher 
pH (7.4) the ionic–COO-groups of polymer molecules repel the water 
molecules due to the existence of ionic repulsions. Therefore there is 
no chance for the formation of hydrogen bonding, which ultimately 
increases the swelling degree at higher pH (7.4) conditions [37]. 

 

 

Fig. 6b: Equilibrium swelling ratio for all profiles at pH 1.2, (Results are expressed as mean±SD, n=3) 

 

In vitro studies 

The in vitro drug release studies of microbeads under study are 
investigated under both pH 1.2 and pH 7.4 at 37 °C. The cumulative % of 
drug release for all profiles at pH 1.2 are displayed in fig. 7. The in vitro 
release studies for all profiles at pH 7.4 are discussed in terms of polymer 

blend composition (fig. 8), drug loading (fig. 9) and crosslinker variation 
(fig. 10). The results reveal that the release rate is higher at pH 7.4 rather 
than at pH 1.2, this is because at pH 7.4 the carboxylate groups have less 
interactions with buffer medium, therefore, the network becomes more 
slack; hence, the entrapped drug molecules easily leach out from the 
network when compared to pH 1.2. 

 

 

Fig. 7: Cumulative % of drug release in pH 1.2 at 37 °C, (Results are expressed as mean±SD, n=3) 

 

Polymer variation 

Cumulative % of drug release was influenced by changing the 
polymer blend ratio at constant drug content (100 mg) and 
crosslinker content (1 ml). From the fig. 8 it was clearly observed 
that as the content of PVP-co-VAc increased, the cumulative % of 

drug release decreased. This trend is observed in the formulations of 
F1 (80:20), F2 (60:40) and F3 (40:60).  

This is due to the presence of hydrophobic part (vinyl acetate) in the 
polymer matrix, consequently decreasing the leaching of an 
entrapped drug from the polymer matrix in to the buffer media. 
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Fig. 8: Effect of polymer blend composition on % cumulative drug release in pH 7.4 at 37 °C (Results are expressed as mean±SD, n=3) 

 

Drug variation 

The effect of drug content on cumulative % of drug release rate was 
observed by varying the drug content at constant polymer blend 
ratio (80:20) and crosslinker content (1 ml). The effect of drug 
content was observed in the formulations F1 (100 mg), F4 (150 mg) 
and F5 (200 mg) and the results are displayed in fig. 9. The 

formulation F5 shows a higher release rate than the F4 and F1; thus 
it was concluded that the release depends on the drug present in the 
matrices i.e., higher the drug, higher is the drug release rate and 
vice-versa. In other words, lower the amount of drug, lower the drug 
release rate was observed due to the availability of more free void 
spaces through which a lesser number of drug molecules could be 
transported [38]. 

 

 

Fig. 9: Effect of drug content on cumulative % of drug release in pH 7.4 at 37 °C (Results are expressed as mean±SD, n=3) 

 

 

Fig. 10: Effect of crosslinker content on cumulative % of drug release in pH 7.4 at 37 °C (Results are expressed as mean±SD, n=3) 



Subha et al. 
Int J App Pharm, Vol 12, Issue 5, 2020, 249-257 

256 

Table 3: Results of % of release kinetics parameters (k and n) of drug in different IPN microbeads formulations 

Sample Korsmeyer-peppas 
n r2 

F1 0.526 0.998 
F2 0.530 0.998 
F3 0.506 0.995 
F4 0.540 0.994 
F5 0.562 0.996 
F6 0.552 0.997 
F7 0.493 0.997 

 

Crosslinker variation 

The effect of crosslinker on the % of drug release rate for 
formulations F1, F6 and F7 are investigated and the results are 
displayed in fig. 10. It was clearly noticed that the % of drug release 
rate of F1 (GA-1 ml) is higher than the F6 (GA-2.5 ml) and F7 (GA-5 
ml), because as the crosslinker content increases the % of drug 
release rate decreases. As the crosslinker content increases, the 
polymer network becomes more rigid; hence the drug molecules 
have less chance to escape from the polymer matrix; therefore, the 
drug release rate decreases [39]. 

Drug release kinetics 

To confirm the release mechanism, the in vitro release results were 
fitted to the following Korsmeyer-Peppas equation. 

Mt/Mα= ktn 

Where Mt/Mα represents the fractional drug release at time t, k is a 
constant characteristic of the drug-polymer system and n is the release 
exponent indicating the type of drug release mechanism. In the 
present study, the values ‘n’ are obtained in the range of 0.493-0.562, 
leading to a shift of transport from Fickian to anomalous type. These 
results, along with correlation coefficients, r2 are presented in table 3. 

CONCLUSION 

In the present study, SA/PVP-co-VAc/MNPs microbeads were 
fabricated by a simple ionotropic gelation technique. The 
microbeads were confirmed by FTIR and DSC studies. Chemical 
stability and molecular level dispersion of CUR in microbeads were 
confirmed by FTIR, DSC, TGA, and X-RD, respectively. SEM studies 
reveal that the beads were spherical in shape with a rough surface 
and the average diameter of microbeads was found to be 1080 to 
1030 μm. The swelling and in vitro release studies performed at both 
pH 1.2 and 7.4 reveal that at pH 7.4 highest swelling and release was 
observed. In vitro releases studies were fitted into the Korsmeyer-
Peppas equation, leading to a shift of transport from Fickian to 
anomalous type. Since the therapeutic efficacy of CUR and MNPs are 
established previously, based on the drug release studies of CUR 
loaded SA/PVP-co-VAc/MNPs microbeads, it is observed that the 
combination of MNPs has not effected the drug release kinetics of 
CUR. Hence it is suggested that the developed SA/PVP-co-VAc/MNP 
microbeads were potentially good carriers for drug delivery of CUR 
and augment chemotherapeutic procedures. 
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