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ABSTRACT 

The Blood-Brain Barrier (BBB) limits transportation to the brain of possible treatment moieties. Specific stimulation of the brain through olfactory 
and trigeminal neural pathways by BBB has been taken into consideration for the development of a wide spectrum of brain therapeutics. The 
intranasal delivery path delivers the drugs through the brain, eliminating any side effects and increasing neurotherapeutics performance. Diverse 
drug delivery systems (DDDss) for reaching the brain via the nasal route have been researched over the past few decades. Large-scale molecular 
biologics, such as Deoxyribonucleic acid (DNA), gene vectors, and stem cells, can be administered intranasally, as a method for the management of a 
range of CNS illnesses, including stroke, Parkinson's diseases, multiple sclerosis, Migraine, Alzheimer's diseases, epilepsy, and mental disorders. 
New DDSs, including nanoparticles, liposomes, and polymeric micelles, have acquired potentials in the nasal mucosa and central nervous system 
(CNS), as effective means of concentrating the brain without toxicity. Differential nasal cavity structures posed a significant obstacle in ineffective 
drugs beyond the nasal valve. Pharmaceutical firms have increasingly used emerging techniques for the production of new nasal pharmaceutical 
drugs to overcome these obstacles. This review aims to identify the new advances in the nasal administration of brain-based DDSs for Migraines.  
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INTRODUCTION 

Central nervous system (CNS) dysfunction means the victims, their 
families, and the community as a tremendous mental, financial and 
social pressure. Despite intense study activities, the numerous 
"diseases of the mind" also have significant deep-rooted issues for 
improved therapeutic strategies, and CNS therapy can also be 
effective for other disorders [1]. The complex pathophysiology of 
neurological disorders, trouble reaching the brain with large as well 
as small molecular drugs, and risk, uncertainty, and massive costs of 
controlled clinical trials present major obstacles in the research and 
production of novel drugs for brain disorders [2]. These issues have 
caused a drop in the pharmaceutical sector in recent years, with 
decreased funding in pharmaceutical production for many CNS 
conditions being identified. Neural disabilities are the world's 
second leading cause of death (16.8 percent of the world's deaths) 
and the primary cause of Disability-Adjusted Life Years(DALY) [3]. 
Oral drug administration is the most appropriate path if clinical 
consequences are envisaged [4]. Because of numerous 
disadvantages including a sluggish action and poor 
bioavailability(40–45%)

According to a new World Health Organization (WHO) study, central 
nervous system (CNS) conditions such as brain cancers, migraine, 
autism, neurodegenerative disorders (e. g., diseases of Alzheimer's 
and Parkinson's), and dementia are among the key triggers of 
human population impairment [6]. Nevertheless, the production of 
drug therapies for the treatment of brain neurological disorders 
relies heavily on the capacity of medicinal agents to successfully 
permeate the blood-brain barrier (BBB) and have a major effect on 
the brain [7, 8]. The brain consists of two major barriers stopping 
external materials: BBB and BCSF. The brain has two major barriers 
that prohibit the entrance of external materials. When intravenous 
or oral drugs are used, the BBB must first travel to transfer into the 
brain [9]. In the last couple of decades, researchers have continued 
to look at new solutions to the introduction of medications into the 

brain [7]. The provision of nose-to-brain supplies the immediate 
supply of medicines to the brain without the need to permeate the 
BBB which can also avoid adverse effects that may arise as 
medicines are routinely ingested. The intranasal administration is 
non-invasive, eliminates the first-pass metabolism, and may 
maximize the amount of drugs that enter the brain in contrast with 
other routes of administration [10]. Talinolol, for example, has 
demonstrated better transmission to rat brain and cerebrospinal 
fluid with intranasal perfusion than with intravenous (IV) infusion 
[11]. 

, oral therapeutic methods cannot 
effectively convey a variety of therapeutic agents into the brain 
along with nausea and inadequate treatment for pain of headaches 
recurring. Oral preparations also have a short half-of 1–2 h, with the 
drug-exposed to hepatic first-pass metabolism and renal functions 
easily cleared away [5]. 

In recent years, the efficacy of intranasal administration to transmit 
a large variety of molecules to the brain has been evaluated 
including insulin, mRNA, siRNA, peptides, liposomes, nanoparticles, 
and also stem cells [11, 16]. For example, in various regions of the 
mouse brain, albumin that can not cross the BBB was found to be 
present 5 min after intranasal administration [17]. Although the BBB 
may be circumvented, the nose-to-brain administration has 
additional obstacles. The drug's capacity to enter the upper and back 
of the nose, including the olfactory area, is a key element in nose-to-
brain medication transmission [10]. The volume of medication that 
can enter the brain when administered nasally can be very low 
(sometimes, relative to the nasal level of the medication, just 0,1-<1 
percent bioavailability in the brain) [18, 19]. Migraine headache is 
the most common headache neurological condition that induces 
pulsating and throbbing pain in the brain. This typically requires an 
irregular artery sensitivity in the brain, which also results in rapid 
alterations of the diameter of the artery. It leads to severe headaches 
affecting certain nerves in the brain and scalp [20]. Antimigraine 
drug treatment intranasally has multiple benefits over 
administration through oral, injectable, or rectal routes [21]. A 
medication delivered intranasally is consumed by the nose's highly 
porous mucous membranes, which allows the fast transfer of non-
metabolized drugs to the central nervous system [22, 23]. The onset 
of action therefore requires gastrointestinal absorption considerably 
faster than in the case of oral administration. 

The intranasal path also provides some clinical advantages, such as 
greater patient acceptability due to the non-invasive method of 
delivery, the ability to administer medication when extreme nausea 
or vomiting happens, and a clearer record of adverse effects [24] 
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Dihydroergotamine, sumatriptan and zolmitriptan constitute first-
line therapies for intranasal medications approved by the FDA for 
the treatment of headache migraine. Originally marketed in Canada 
and Europe, intranasal dihydroergotamine, which was approved by 
the FDA in 1997. Sumatriptan and zolmitriptan nasal spray 
formulations were approved by the FDA respectively in 1997 and 
2003. Clinical trials clearly indicate that triptans administered 
intranasally provide quicker relief than their oral counterparts. It, 
along with their stronger acceptability for patients with intermittent 
nausea and vomiting, provides clear explanations for their daily use 
[24, 25].  

Nose to brain drug transmission mechanism 

Different drug delivery pathways have been identified, such as the 
systemic pathway by which the drug is absorbed directly into the 
systemic bloodstream via the nasal cavity and then through the BBB 
into the brain; the olfactory pathway through which the drug passes 
through the olfactory epithelium through the olfactory bulb and 
deeper into the brain tissue or the cerebrospinal fluid (CSF); and the 
pathway through which it passes through the olfactory epithelium 
[26]. The neuronal Olfactory pathway is further split into two 
intraneuronal routes. In the intraneuronal cascade olfactory neurons 
in the olfactory epithelium consume the molecules by mechanisms 
such as endocytosis, and then axonally enter the olfactory bulb. In 
the extraneuronal pathway, drugs delivered intranasally first cross 
the distances between the olfactory nerves in the olfactory 
epithelium and are then transferred to the olfactory bulb. The 
substances can invade other brain regions by diffusion after entering 
the olfactory bulb, which may also be facilitated by a "perivascular 
pump" which is powered by arterial pulsation [27]. There is a 
distinction between medication transmission by olfactory or 
trigeminal nervous systems and permeation of the nasal mucosa. 
Upon administration of the drug by the nasal cavity, the drug 
permeates to the systemic circulation through the highly 
vascularized nasal mucosa and may or may not cross BBB and enter 
the brain. Olfactory epithelium, olfactory cortex, or trigeminal 
nerves, however, play a major role in delivering drugs into the brain.  

Nose-to-brain transmission of drug has been attempted by many 
researchers who have explored the benefits of this path such as ease 
of medication administration and needle-free substance usage 
without the need for skilled professionals, promoting self-
medication, non-invasiveness, virtually painless, avoidance of first-
pass hepatic metabolism and hence dose control capacity relative to 
oral dosage. Fast ingestion, fast onset of action due to relatively 
broad ingestion surface, strong vascularisation, avoidance of 
chemical and enzymatic drug degradation in gastrointestinal (g. i. t) 
fluid, increased permeability of lipophilic, low molecular weight 
drugs via nasal mucosa allow this path for drug administration such 
as peptides or protein [28]. The transmission of nose-to-brain is 
possible via the olfactory zone on the nasal cavity roof and the 
neuroepithelium is the only part of the CNS that is open to the 
external atmosphere [29]. The olfactory area of nasal mucosa 
providing a clear link between nose and brain is used to target drug 
molecules that function on CNS used in disorders such as 
Alzheimer's disease, epilepsy, migraine, schizophrenia, etc [30]. 
Although humans were not commonly studied on the olfactory route 
because of problems in absolute CSF or brain tissue measurements, 
numerous animal tests have been reported for medicines such as 
olanzapine, risperidone, buspirone, ropinorole, didanosin, 
zolmitriptan, sumatriptane, rivastigmine, venlafaxine, and 
clonazepine.  

For testing such schemes, statistical parameters such as drug 
targeting index (DTI), direct transport percentage (DTP percentage), 
drug targeting efficiency (DTE percent), and their visualization 
techniques such as gamma scintigraphy are used. The degree to 
which the drug affects the brain after i. n. DTI, which can be defined 
as the ratio of the value of the AUC brain/AUC blood following i. n. 
subsequent administration to i. v. control. The higher the DTI is, the 
more it can be predicted that the drug will reach the brain after the i. 
n. management [31].  

The brain targeting efficiency is measured as follows: DTE percent 
and DTP percent which reflects the time-average partitioning ratio. 

1. The efficiency of drug targeting (DTE percent) reflecting the time-
average partitioning ratio is determined as follows:  

 

2. The percentage of direct nose-to-brain transport (DTP percent) is 
calculated as follows:  

 

Where Bx 1⁄4 P i. n. (Bi. v ./P i. v

B

.) Bx is the brain AUC fraction that is 
contributed after intranasal administration by systemic circulation 
by BBB 

i. v. 

P

is the AUC0–240 (brain) following intravenous administration. 

i. v. 

B

is the AUC0–240 (blood) following intravenous administration. 

i. n. 

P

is the AUC0–240 (brain) following intranasal administration. 

i. n.

Imaging of gamma scintigraphy is conducted on the brain of animals 
following i. v. and I. n. Administration to determine the location of the 
medication in the brain and other tissues such as heart, kidney, 
esophagus, stomach, and intestine. Imaging is achieved using 
Computerized Tomography Single Photon Emission (SPECT, LC 75-
005, Diagram, Siemens AG, Erlanger, Germany) gamma cameras [33].  

 is the AUC0–240 (blood) following intranasal administration 
[32] 

Conventionally, many dosage formulations have been used for 
intranasal delivery such as liquid drop, liquid spray/nebulizer, 
aerosol, gel, and suspension spray. There are many barriers in the 
nasal cavity such as the physical removal of mucociliary clearance, 
enzymatic degradation, and nasal epithelial permeability. Several 
methods for enhancing medication permeation through the nasal 
mucosa, including the use of mucoadhesive polymers and absorption 
enhancers, were studied for the prolongation and improvement of 
the drug's contact time with the nasal mucosa. 

Nanoparticles, nanosuspension, nanostructured frames, 
microemulsion, and solid lipid (SLN) nanoformulations are the 
different investigated nanoformulations. Different nanoformulations 
are investigated. These formulations could be used as an effective 
carrier for the delivery of therapeutic agents through the nose-to-
brain route for the therapy of CNS disorders based on the reports on 
nanoformulations. 

Strategies for nose-to-brain transmission 

Improving permeation 

Permeation boosters are widely used in the provision of drugs for 
increased membrane permeation. While most lipophilic drugs can 
permeate the nasal mucosa themselves, it is typically difficult to 
permeate small hydrophilic compounds, peptides, and 
macromolecules, and therefore it would be of considerable benefit to 
enhance permeation [34] 

Surfactants are typically used to improve the permeation of 
substances through the nasal mucous membrane, but their process 
can include nasal barrier disruption, which can lead to discomfort or 
nasal mucous toxicity[35,36]. Types of surfactants used to improve 
nose-to-brain transmission are non-ionic surfactants, such as 
Cremophor EL, Cremophor RH40, Poloxamer 188, and laurate 
sucrose ester [37]. 

The permeation of medicines across the nasal mucosa is also 
improved by cyclodextrins, lipids, and even polymers [4, 35, 36]. For 
instance, β-cyclodextrin and chitosan microparticles were used by 
Rassu et al. to improve the nose-to-brain distribution of 
deferoxamines [38]. 

Chitosan can loosen tight joints in the nasal epithelium and increases 
drug permeability. Chitosan's mucoadhesive characteristics also 
increase drug holding time in the nasal mucosa and result in 
increased drug permeation[39]. Horvát et al. used sodium 
hyaluronate and Cremophor RH40 to effectively improve the 
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permeation of dextran, a hydrophilic molecule with 4.4 kDa 
molecular weight. Hyaluronate has clotting properties which 
increase the time the formulation is in contact with the nasal mucosa 
and Cremophor RH40 helps to increase permeation as a surfactant. 
While surfactants can cause irritation or tissue toxicity, in this 
particular case no irritation and ciliotoxicity have been observed by 
either Cremophor RH40 or Hyaluronate [37].  

Inhibitors of enzymes 

The nasal cavity has many proteins, such as CYP450 isoforms, 
transfers, carboxylesterases, and other drug-metabolizing factors. 
Inhibition of these enzymes can improve in situ stability and avoid 
biotransformation, and thus increase the amount of active drug that 
can be ingested into the brain to create an 

Effect [36, 40, 41]. After fluvoxamine, a competitive CYP450 
inhibitor, Dhamankar and Donovan have recently demonstrated an 
improvement in melatonin permeation through the respiratory 
nasal olfactory mucosa [42]. In addition, the saturation of the 
enzyme at a high melatonin concentration also increased the 
permeation of melatonin without metabolic activity [42]. Hussain et 
al. also showed that α-aminoboronic acid derivatives inhibit 
protease degradation in the nasal mucosa, even though no research 
on enhanced nasal absorption and nose-to-brain transmission was 
conducted to understand the effect on [43]. 

Inhibitors of P-glycoprotein 

P-glycoproteins (Pgp) are membrane conveyor proteins that are 
found in the BBB, nasal mucosa, olfactory epithelium, and the 
olfactory bulb that are responsible for the efflux of the brain drugs. 
Fortunately, Pgp substrates aren't all drugs. Pgp substrates may be 
lost by the nose-to-brain supply and released with a negligible effect 
from the brain to the blood circulation. Verapamil is one such 
example [44-46] To resolve this effect, Shingaki et al. use cyclosporin 
A as a Pgp inhibitor and show that the permeability of verapamil 
following nasal or intravenous infusion has increased by cyclosporin 
A [11]. In the absence of Pgp, diazepam, verapamil, and antipyrine, 
graff et al. used Pgp-deficient mouse and Pgp-competent mice to 
show that they improved their brain transfer compared with Pgp-
competent mouse [46]. In another study, the use of rifampin, which 
is a Pgp inhibitor, in Pgp-competent and Pgp-deficient mice 
increased the use of verapamil in the brain [44, 45]. 
Coadministration of two Pgp inhibitors pantoprazole and elacridar 
with imatinib mesylate also raised the later brain concentration [47]. 

Mucociliary clearance antagonists 

The nasal mucosal cilia act as a barrier to particle penetration from 
the outside. They are found in the respiratory area and part of the 
olfactory region. In the olfactory zone, though, those are not motile. 
In the respiratory area, cilia are responsible for transferring mucus 
from the nose to the oropharynx. Every 10–15 min the mucus is 
cleansed through this mechanism. This method is called mucociliary 
clearance [48]. Once medications enter the nasal cavity and become 
caught in the secretions of cilia and mucus, they appear to be 
removed in minutes. Approaches to suppress cilia improve the 
processing time in the nasal mucosa and, thus, can be used to 
increase the amount of medication that can be absorbed into the 
brain via the respiratory epithelium or olfactory epithelium. Because 
the olfactory epithelium doesn't have flexible cilia it arises if it can 
influence the absorption of the drug through the olfactory 
epithelium into the brain or either via trigeminal nerve pathways 
and/or the respiratory epithelium into the brain by inhibiting the 
mucociliary clarification in the respiratory area. Or in other words, 
if inhibiting motile cilia in the respiratory region will improve drug 
absorption in the olfactory epithelium region above? The dimension 
in the current literature does not seem to have been widely 
explored. For improved nose-to-brain transmission, sodium 
hyaluronate and cremophore RH 40 have been used in the study by 
Horvát et al. As a permeation enhancer and as a mucosal polymer, 
cremophor RH40 was used as a mucosal hyaluronate. When used 
alone, except for the olfactory bulb and frontal cortex the excipients 
did not increase the supply of dextrane to the brain. But, besides, 
they increased the amount of drug in the olfactory bulb and 

intravenous cortex [49]. This study demonstrates that dextran was 
directly taken to the brain and stopped blood and BBB from going 
through it, but it does not reveal the direction of entry into the brain 
of the molecule. Therefore, the authors hypothesized that it may be 
linked to sodium hyaluronate's mucoadhesive features and possible 
increased residence times as well as increased surfactant 
permeation [37]. Mucociliary clearance strategies include the use of 
chitosan (see above), hyaluronan, poloxamer, carbopol, gellane-gum, 
polycarbophil, and other polymers which increase viscosity, stick to 
the mucus, and delay mucociliary clearance [49, 50]. Those polymers 
are thermo-responsive materials, liquid when stored and applied, 
and starting to gel only when in contact with the nasal mucosa [51, 
52]. The use of agonistic α-adrenergic receptors including ephedrine 
was also studied to decrease the amplitude of cilia beat and 
postpone the mucociliary clearance [53, 54]. Nevertheless, not many 
studies have been carried out to relate directly to their effect on the 
clearance and transportation of drugs to the brain. Section 4.9 
addresses vasoconstrictors. 

Concept of prodrug 

Prodrugs are chemically modified compounds, which improve the 
permeation of certain tissues or prevent degradation of chemical 
substances. Medicines are usually inactive medicines that are 
activated only after the activation of the enzyme. When drugs come 
to the body, the enzymes (for example, esterase) are converted, the 
active drug is released from the intended place of delivery [41, 55]. 
The approach was used in the treatment of nausea, vomiting, and 
Parkinson's disease to improve the permeation for delta-9-
tetrahydrocannabinol and L-dopa via nasal mucosa [41, 56, 57].  

Nanoparticles 

Nanoparticles are commonly used for transmission from nose to 
brain. 

Several authors covered the surface of nanoparticles with additives 
with a certain similarity to the sugar molecules of the cavity and thus 
increased the molecular transport from the nose to the brain (e. g. 
lectin-coated nanoparticles). Nanoparticles may have a high 
molecular weight and low lipophilicity as well as a major impact on 
the supply of medicinal products prone to metabolism in the nasal 
cavity. The nanoparticles are encapsulated to keep the drugs intact 
with the nasal mucous membrane, as is seen in the vasoactive 
intestinal peptide (VIP) delivery below [58]. 

The nasal permeability of polar and high molecular weight 
compounds is small. However, this challenge has been solved by the 
use of micro-particles and nanomaterials [59]. One of the drawbacks 
of nanoparticles is their significantly larger size, as 
nanoparticles>100 nm surpass the diameter in the olfactory filia, 
resulting in at least less transportation through the olfactory 
tract[60].  

If nanoparticles are transported intact to the brain through the 
olfactory epithelium or whether nanoparticles release drugs and 
then are transported or distributed to the brain is still not clear.  

Lectins are proteins or agglutinins that bind directly to sugar 
molecules or components of a glycosylated membrane. The nasal 
mucosa comprises certain components. Consequently, lectins have 
been commonly used to cover the surface of nanoparticles or other 
carriers to improve their binding to the nasal mucosa to increase 
their absorption into the brain [58]. For example, nanoparticles 
were used to improve the supply of vasoactive intestinal peptide 
(VIP) and Fluorescent samples by Gao et al. in poly(ethylene glycol)-
poly (lactic acid) (PEGPLA) surfaces [58, 61]. 

VIP-WGA-coated PEG-PLA nanoparticles in rats were administered 
on an intranasal basis and led to brain levels 5-7 times higher than 
VIP solution control intranasal. The nanoparticles without WGA also 
produced a 3-to 4 times more brain levels of VIP than the intranasal 
VIP solution. This showed that nanoparticles enhance drug delivery 
in the olfactory zone [58]. The drawbacks of this method are related 
to the inability to pick the lectins for an olfactory epithelium and to 
dispersion into other regions of the nasal mucosa, such as the 
olfactory and respiratory regions in general [58, 61, 62].  
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Peptides for cell penetration 

Cell-Penetrating Peptides (CPP) are small sequences of amino acids 
that cross the cell membranes and aid the internalization of material 
into the cells. protein transduction domain [63]. Kamei et al. 
effectively increased the insulin release in the brain after penetratin 
coadministration. The team found that insulin did not enter the 
brain effectively relative to IV administration following intranasal 
administration. Intranasal administration took 10 times the dosage 
for IV to reach the same amounts of the medication in the brain [12]. 
L-or D-penetratin as a CPP was then used in combination with 
insulin and the amount of insulin in the brain, mainly by the 
olfactory bulb, was increased, both by L-and D-penetratines. The 
hippocampus, which is known to have insulin sensors, was also 
transported by insulin. In comparison, D-penetratin improved the 
delivery of insulin to the brain with the least systemic absorption 
and helped contribute to a greater amount of insulin in the plasma 
[12]. The latest research on visualization and quantification of 
insulin delivery in the brain confirmed this once again [64]. 

Eutectic mixtures 

To treat migraine exacerbations, Khan et al. produced a dry eutectic 
zolmitriptan powder. The findings showed that, compared with 
intranasal instillation of zolmitriptan powder or IV zolmitriptan 
injection of a solution of zolmitriptan, the intranasal administration 
of zolmitriptan eutectic mixture led to higher rates in the brain [65]. 
Borneol/menthol eutectic mixtures were also used as cobrotoxin 
enhancers. When the eutectic mixture was used cobrotoxin 
permeated the olfactory epithelium, but in the absence of the 
eutectic mix, it was not observed. Conspicuously improved brain 
delivery of cobrotoxin intranasally relative to intravenous 
administration of Borneol/Menthol [66].  

Vasoconstrictors 

Dhuria et al. have used vasoconstrictors to increase drug supplies 
from the nose to the brain by decreasing drug absorption into the 
systemic circulation and increasing nasal mucosal retention time. In 
conjunction with hypocretin 1 (HC) and L-Tyr-D-Arg (DKTP), for 
example, when 1 percent was used in phenylephrine hydrochloride, 
blood plasma content was decreased by 65 percent, and 56 percent 
respectively, compared to the drug alone 30 min after intranasal 
administration. More specifically, when the vasoconstrictor was 
used the sum of HC and D-KTP entered the olfactory bulbs in the 
brain. Besides, when phenylephrine concentration was raised from 
1% to 5% and administered nasally, in conjunction with D-KTP, a 
substantial increase in medication was observed not only in the 
smelling bulbs but also in other areas of the CNS [67]. Illum et al. co-
administered Ephedrine in rats previously, but no decrease in 
systemic absorption was observed with angiotensin antagonist 
GR138059 solution. 

Besides, both systemic and brain absorption was increased by the 
combination of 1% ephedrine with a drug solution. The medicinal 
concentration within the brain was significantly higher compared 
with blood plasma levels when comparing ephedrine effects in 
systemic absorption and brain absorption. The authors conclude 
that ephedrine may have affected the tests, contrary to previous 
research on other mucosal surfaces, when used in the drug solution 
instead of administering the vasoconstrictor [53]. This, however, 
may not be the case as more recently intranasally and systemic 
absorption was decreased during the increase in nose-to-brain 
supply, Dhuria et al. reported coadministration of phenyl and 
neuropeptides [67].  

Physical methods 

The localization of the drug until it penetrates the olfactory 
epithelium and reaches the brain is another disadvantage of nose-to-
brain delivery. Physical methods are effective at position monitoring.  

Magnetophoresis  

The poor transmission capacity in the olfactory area is one of the 
drawbacks of nose-to-brain transmission. Magnetophoresis consists 
of applying a magnetic force in a particular region of the corps to 
attract magnetic particles. In order to improve the delivery of drug 

output in the olfactory region and thus the amount of drug that can 
be directly transferred to the brain, Xi et al. used 
magnetophoresis[68]. Researchers estimated that ferromagnetic 
microspheres will be delivered to the brain 64 times higher than 
their ability [68]. The key advantages are the ability to identify and 
target those regions, especially the most difficult to reach olfactory 
epithelium using standard methods. The main drawback of this 
approach is that the magnet intensity (90 percent) decreases by only 
5 mm from the magnet; a magnet strength which has to be used in 
order to balance gravity and enable particles to be moved in a given 
region and the need for a magnetic gradient. The drawbacks make 
this approach very difficult for nose-to-brain delivery, but this article 
also demonstrates that this method is feasible for medicinal supply 
purposes. 

The distribution efficiency to the olfactory area was 45 percent 
compared to the traditional approaches based on the right particle 
size and magnet configuration (in this case 15 μm) 

Ultrasound  

In order to evaluate its effect on transportation to the brain of a 
brain-derived neurotrophic factor (BDNF), Chen et al. used mouse-
based ultrasound sonication (FUS). This approach was previously 
used by the same community to slowly open and locate BBB to IV-
injected drugs in a particular focus in the brain (millimeter range) 
[69, 70]. Chen et al. suggested a similar effect to combining FUS with 
intravenous administration with the application of centered 
ultrasounds with intranasally-administered BDNF. Further, the 
combination of the FUS and the intranasal administration of the 
BDNF alone improves the location of the BDFN in a specific area of 
the brain [71].  

Devices 

The limited surface size of the olfactory system (1–5 cm2

A breathing system is used to manufacture sumatriptan in the 
olfactory area of the nasal cavity in one of the items currently on the 
market. The system was first invented by Optinose ®, named 
OptPowder, so when the patient exhales the palate closes, the lung is 
not deposited and drug deposition is enhanced [73]. ONZETRA ® 
XSail ® is the first on the market to use the system technique for 
sumatriptan supply and migraine care. The substance has shown 
drug deposition in the back and top regions of the nasal cavity, but 
no evidence of drug transfer to the brain has been identified via the 
olfactory region or trigeminal nerve pathway. The absorption of 
sumatriptan mainly through the nasal cavity seems to be systemical 
[74, 75]. Another example is ViaNase

) and its 
position on the nasal mucus prevents drugs from entering and 
building up in the region and from being prepared for absorption 
[72]. Different devices have been designed to enhance the direct 
interaction with the olfactory region of the nasal cavity for drug 
formulations.  

TM which is an atomizer based on 
the vortical flow of fluid gout in the vortex chamber and even when the 
system exits the nasal cavity, providing successful saturation and 
preventing pulmonary and stomach deposition [76, 77]. This device, 
by Kurve TechnologiesTM

Challenges 

, has demonstrated evidence of insulin 
delivery intranasally to patients with mild Alzheimer's disease and 
mild amnestic cognitive impairment [78, 79] 

The intra-nasal drug delivery route is also regarded as an enticing 
way to rapidly enter the brain. Their rapid response has various 
advantages, such as their ability to avoid BBB, more accurate 
targeting of medicinal products, faster action, avoiding first-
pass metabolism of drugs at the liver, more important areas of 
medicine absorption, reduced systemic side effects, non-invasive, 
convenient and patient-friendly route to administration [80, 81]. In 
addition, the clinical use of IN formulations for the delivery of brain 
pharmaceutical products must go further. Some of the common 
limitations to the delivery of IN drugs include poor nasal mucosal 
permeability, mucociliary clearance, drug degradation, low drug 
retention times, and nasomucosal toxicity [82]. Various enhancers of 
permeation [83], guided supply structures, colloidal drug carriers, 
and other new methods were used to increase drug permeability 
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and absorption [84]. By using an effective mucoadhesive method, 
such as viscous solution, mucoadhesive polymers, hydrogel, in situ 
gelations, durability is increased and mucociliary clearance is 
reduced [85]. In addition, other protective measures (such as 
encapsulation in the nanocarrier system) are required to protect the 
drug against enzymatic degradation. The IN-drug delivery should be 
supported by these formulating strategies. However, since the 
sometimes and high dose of the formulation irritates the nasal 
mucosa, the clinical effectiveness of IN insulin therapy is minimal. In 
addition, nasal mucosa protective barriers restrict the effects of IN 
therapy as only 1% or<1% of the drug enters the brain following IN. 
Work will therefore focus on creating an appropriate formulation to 
resolve these barriers [86].  

The essence of the medication, the excipients, and the drug's potency 
should also be considered together with this. Compared to the other 
pathways, the volume of the nasal cavity is comparatively low (25 
cm3

Various scientific studies prerogative straightforward as well as 
active drug migration from the nasal cavity to the brain. But various 
other research works just deny this matter of direct transport. The 
researchers working at Leiden University haven’t seen any proof of 
nose-to-brain delivery with estradiol, vitamin B

), allowing only a limited amount of formulation (100–200 μl) at 
a time. A strong agent is therefore ideal for the delivery of drugs to 
the brain in IN. The excipients must also be biocompatible and 
contain no offensive odour [87]. In fact, the formulation's pH (5.0–
6.5), tonicity, and viscosity also serve a significant role in the 
shaping of formulations[86-88]. The expertise to administer the 
drug into the brain plays one of the main parameters of drug 
absorption. The mucociliary clearance of the drug is obvious if the 
formulation is dumped to the basal area of the nasal cavity. The 
movement of the drug towards the blood flow is possible by the 
frontal section and the drug captivation to the olfactory area or brain 
is done by the posterior and upper region of the nasal void. Specific 
delivery equipment like a needleless syringe, spray, nasal dropper, 
etc. is used to put the medication into a suitable section in the cavity 
of the nose [89]. OptiMist™ (a breath actuator) [90] and ViaNasa™ 
(electronic atomizer) [79] are the most popular equipment for 
aiming to the brain [86].  

12,

Migraine: an overview 

 and melatonin 
[91] whereas, several other scientists claimed a significant amount 
of those compounds in the brain [92]. This incident shows the 
alteration of methods, aspects regarding formulations as well as the 
condition of the whole study. So, a profound understanding of 
formulation factors is recommended for effective medical 
application of the approach [91]. Though there are so many positive 
results as well as obstacles regarding the application of drug through 
nasal route but more study and research is needed for successful 
marketing of those products.  

Migraine can be considered as an incapacitating and ubiquitous 
neurovascular ailment [93], commonly categorized with a headache 
with ≥2 features of pulsation, one -sided position, moderate to 
unembellished strength and deteriorating by the scheduled physical 
bustle, associated with ≥1 indication of nausea and/vomiting, 
photophobia and phonophobia [94]. But all the symptoms are 
subjective as well as different. Moreover, one out of three subjects of 
migraine are sufferers of a special type of focal neurologic visual 
syndrome called aura [95, 96]. Throughout the spell, the blood 
vessels in the brain expand and then assemble by triggering nerve 
culminations near the exaggerated blood vessels. There lies the main 
reason for pain or discomfort [97]. The duration of the pain varies 
from 2 h and even up to 3 d and it may move from one half to 
another [98]. Several hereditary and environmental influences are 
considered as two main reasons behind migraine. As a preliminary 
statistics hereditary cases lead to two-third of migraine cases. 
Variability in gender also causes an alteration in the disease 
population. Females are more susceptible to the migraine than the 
males especially the difference rises after adolescence. The research 
revealed 3 out of 4 patients with migraine are females [99].  

Migraines became well recognized in ancient human culture. In the 
Old World (7000 BCE) Trepanation (drilling a hole in a hole in the 
skull) has been recommended for migraine care. The people 

believed this practice back then let certain evil spirits escape the 
mind. In the position, William Harvey suggested trepanation as an 
effective migraine treatment even in the 17th century. That was 
1868 when the "ergot" fungus was first used in migraine medication. 
Ergotamine was eventually successfully isolated from ergot in 1918 
and used for migraine treatment. Then methysergide was 
synthesized in 1959 and sumatriptan(the first triptan) was 
developed in 1988 [100].  

Migraine is typically separated into two types: (1) aura migraine and 
(2) non-aura migraine. Migraine disorder pathophysiology is not 
well established; some experts theorize that the CNS bears sole 
responsibility for the pain. Others assume the peripheral one 
sensory neuron and including blood supplying vessels play a 
significant function in the initiation of disease. Standard analgesics 
such as paracetamol, headache ibuprofen, and popular nausea 
prescription items are used for primary treatment. If these are 
unsuccessful, the prescription is for triptans and ergotamines. 
Caffeine can also sometimes be used to treat serious pain. Analysis 
Present Calcitonin-based gene peptides (CGRP) such as telcagepant 
and olcegepant claiming to be pathophysiologically working on 
migraine medication focused on the use of pain associated genes. 
Unfortunately, in 2011 Merck failed to perform a Phase III clinical 
trial on telcagepant. CGRP monoclonal antibodies are now also being 
tested for competent migraine therapy [101].  

Recent developments in the nasal sector for migraine therapy 
at a glance 

Mucoadhesive nanoemulsion of zolmitriptan 

Abdou et al. claimed that Zolmitriptan Nanoemulsion Mucoadhesive 
was thriving formulated and defined for intranasal delivery to be 
appropriate for use. The nanoemulsion primed showed a small 
average globule size, longer retention time, and increased drug 
propagation through the nasal mucosa. In vivo research of the 
formula in mice resulted in improved direct delivery of drugs to the 
brain, with a greater proportion of drugs and quicker onset of action 
than the intravenous or nasal solution. The formula showed high 
DTP percentage and DTE percentage resulting in the drug being 
extremely bioavailable in the brain. Additionally, it revealed no 
abnormality in mice's nasal mucosa after application for 14 d. From 
the results, it appears that zolmitriptan formulation as 
mucoadhesive nanoemulsion is a potential drug delivery method to 
improve its bioavailability and effective treatments [102].  

Transnasal zolmitriptan novasomes 

Radwa et al. produced free fatty acid-enriched vesicles, termed 
as novasomes were successfully prepared and filled with a high 
percentage of a nano-sized hydrophilic product (Zolmitriptan or ZT). 
Especially in comparison to the I. V 99mTc-ZT approach, 99mTc-ZT-
loaded novasomes showed enhanced nose to brain targeting. 
Therefore, ZT-loaded novasomes administered through the nasal 
route can be an advance in the management of acute migraine 
attacks [103].  

Almotriptan loaded solid lipid nanoparticles in mucoadhesive 
in-situ gel preparation 

In this study by Yossef et al., the intranasal drug delivery method for 
ALM brain targeting was developed. SLNs were prepared using the 
double emulsion solvent evaporation technique w/o/w, specifically 
selected to trap hydrophilic drugs in SLNs. Studies of optimization 
of; the forms and quantities of lipid and external stabilizers were 
done. After comprehensive trials, air-dried and dispersed into an 
engineered, thermo-sensitive mucoadhesive in situ gel, the selected 
solid lipid nanoparticles formula had the highest percentage of 
entrapment efficiency and small particle sizes, which increases nasal 
time and thus bioavailability. Evaluation of pharmacokinetics and 
bio-distribution revealed that intranasal in-situ gel-based formulae, 
Nasal Formulation (SLN-based) is a good candidate for brain 
targeting of Almotriptan from the nose, as it showed obvious rapid 
ALM brain delivery; Tmax/brain was 10 min, Cmax/brain was twice 
as high ND (Free ALM-based) and IV. The measured targeted indices 
(DTE percent and DTP percent) confirmed both NF and ND 
capabilities for ALM nose targeted brain. The evaluation of 
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biomarkers and the results of histopathological exams indicated the 
higher NF (in-situ gel-based SLNs) health profile for nasal 
administration; It has shown no signs of cell necrosis, damage to the 
mucosa, or loss of cilia, with a healthy biomarker.  

Lastly, their NF Pr-SLNALM in C4 in-situ gel combined a well-known 
vector which preferably targets olfactory receptors, enhances ALM 
absorption and targets the brain, bypasses the BBB, and uses a 
secure delivery system which starts even faster than in an 
intravenous course, preferably with more. Further clinical trials of 
the developed method in humans in future studies are reinforcing 
the results achieved [104].  

Sumatriptan nasal powder 

Al-Salama et al. reported that Sumatriptan nasal powder was 
successful in treating acute migraine with or without aura in well-
designed phase 3 trials in adults. Sumatriptan nasal powder has 
been substantially better than placebo for primary care after a single 
procedure and with these advantages, most secondary endpoints 
persisted at 24 and 48 h. Sumatriptan nasal powder was 
significantly more effective than oral sumatriptan during the first 30 
min of treatment during the multi-treatment study; Relief, pain 
relief, and full freedom of migraine at all times 15 to 90 min after the 
dose and the reduction of photophobia-, Phonophobia-and-nausea 
symptoms associated with migraine (but not vomiting) at different 
times during this period. Sumatriptan nasal powder was 
significantly more effective than oral sumatriptan during the first 30 
min of treatment during the multi-treatment study; pain relief and 
full freedom of migraine at all times 15 to 90 min after the dose and 
the reduction of photophobia-, Phonophobia-and-nausea symptoms 
associated with migraine (but not vomiting) at different times 
during this period. 

No significant intergroup exists from 1.5 h after dosing Nasal 
powder and oral formulations differ in ineffectiveness. The fast 
beginning of the action can be attributed to Delivery mechanics 
resulting in fine powder propulsion to the mucosa of the back Nasal 
cavity, a rich mucosa region permitting the medicine into the systemic 
circulation is absorbed directly. The majority of the adverse events 
related to administration site and of moderate or mild severity were 
tolerated in clinical trials with sumatriptan nasal powder. The atypical 
sensations of Triptan were slightly lower with the lower mean average 
plasma levels found with Sumatriptan Nasal Powder in patients 
receiving nasal sumatriptan powder than in those receiving oral 
sumatriptan. Sumatriptan was an inexpensive and effective nasal 
powder tolerated generally well-designed migraine treatment test of 
phase 3. With a new breath, nasal delivery powered. This leads to a 
faster action start than oral sumatriptan, nasal powder Sumatriptan 
offers a new useful possibility for acute migraine treatment in adults 
with and without aura [105]. 

Chitosan nanoparticles 

Gulati et al. described the ionotropic gelation process using Taguchi 
design to optimize sumatriptan succinate-loaded chitosan 
nanoparticles have been successfully formulated. The nanoparticles 
obtained can easily penetrate through particle size into the nasal 
mucosa. The formulation showed a continuous release of up to 24 h, 
with several daily doses reduced to once a day [106].  

Zolmitriptan nasal spray 

Tepper et al. formulated Zolmitriptan NS has therapeutic benefits for 
migraine patients. aIt can be summarized as "5-10-15-30" for the 
pharmacokinetics and efficacy of the plasma within 5 min. The 
headache action is essential as early as 10 min, major painless 
reactions as early as 15 min and total relief happened as early as 30 
min [21]. 

Almotriptan microsphere 

Abbas et al. prepared GG microspheres filled with Mucoadhesive and 
biodegradable ALM were successfully developed by cross-linking 
w/o emulsification technique employing 23 total factory 
construction. The findings of their present study demonstrated the 
promising potential of GG microspheres for intranasal drug delivery. 

Upon contact with the nasal mucosa, the microspheres form a 
viscous gel by removing water, and interaction with cations present 
in nasal secretions, which eventually leads to a reduction in the rate 
of ciliary clearance and consequently prolongs the residence time for 
the formulation. Besides, mucoadhesive microspheres could be 
utilized at desired times for burst release to influence any necessary 
modulation in the plasma level of drugs. ALM's controlled release 
profile from the microsphere can help to decrease the dosing 
frequency and potentially maximize the therapeutic profit, ensuring 
healthy, patient-friendly, reliable, and cost-effective distribution of 
drugs.  

Even so, for these formulations to be adequate in clinical practice, 
extensive animal studies of diverse species followed by extension 
clinical trials and toxicology assessment need to be carried out [107]. 

Randomized trial between AVP-85 sumatriptan nasal powder 
vs 100 mg oral sumatriptan 

COMPASS is a rigorous, comparative design in which the efficacy 
study shows that the bi-directional intranasal delivery system of the 
investigational AVP-825 provides an earlier reduction in the 
intensity of migraine pain statistically and clinically essential and 
pain relief levels higher without the lack of suffering and dignity 
within 30 min. Maintained efficacy as the most effective oral dose 
given slightly lower sumatriptan (100 mg) exposure to medications. 
Furthermore, AVP-825 statistically conferred significantly fewer 
adverse effects associated with triptan than 100 mg of oral 
sumatriptan. Since oral sumatriptan is the triptan used most 
commonly for acute migraine treatment, the findings of this trial will 
provocate the current model of migraine treatment [108]. 

CONCLUSION  

The Blood-Brain Barrier (BBB) limits the transportation to the brain 
of possible treatment moieties. Intranasal delivery path delivers the 
drugs through the brain, eliminating any side effects and increasing 
neurotherapeutics performance. New DDSs, including nanoparticles, 
liposomes, and polymeric micelles, have acquired potentials in the 
nasal mucosa and central nervous system (CNS), as effective means 
of concentrating the brain without toxicity. Differential nasal cavity 
structures posed a significant obstacle in ineffective drugs beyond 
the nasal valve. Pharmaceutical firms have increasingly used 
emerging techniques for the production of new nasal pharmaceutical 
drugs. So, in the case of effective therapy for CNS diseases especially 
Migraine, the nasal route can be a torch-bearer. 
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