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ABSTRACT 

Phytosterols (PS) are biologically active steroidal compounds obtained from plant foods and cholesterol is found in animals. They have a prominent 
role in reducing the low-density lipoprotein (LDL) cholesterol levels, thus decreasing the risk of many diseases. PSs also have anti-cancer, 
antioxidant, antiulcer, immunomodulatory, antibacterial, antifungal effects and modulate inflammation by promoting the wound healing and 
inhibition of platelet aggregation. The most challenging part concerned about phytosterols was bioavailability. Phytosterol’s absorption and the 
concentration of circulation over the body were lesser in human intestine compared to cholesterol because of its selectivity and return through 
intestinal transporters. We searched PubMed, Scopus, Embase, Google scholar and major conference proceedings. Sixteen such therapeutically 
potent plant steroids were studied in this systematic review to assess the bioavailability issues of phytosterols. Swiss ADME web tool that gives free 
access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry 
friendliness was used for the study. 
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INTRODUCTION 

Phytosterols (PS) are biologically active steroidal compounds 
obtained from plant foods and cholesterol is found in animals [1, 2]. 
Beta-sitosterol, campesterol, and stigmasterol are the common 
phytosterols in plant and animal diet such as edible oils, nuts, cereals 
and citrus fruits [3, 4]. These steroids have a common cholesterol 
skeleton with different side chains. Phytosterols eminently regulates 
plenitude of plant physiological process leading to proper growth of 
the plant [5]. Phytosterols have several health applications but could 
not be derived by humans; should be obtained from plants and 
animals as a part of diet. The biological and therapeutic activity of 
phytosterols depends on their formulation and solubility nature. 
Researches provide supporting evidences that PSs and their 
derivatives have multiple pharmacological properties and human-
wellness-promoting abilities. They have a prominent role in 
reducing the low-density lipoprotein (LDL) cholesterol levels, thus 
decreasing the risk of many diseases [6-8]. PSs also have anti-cancer, 
antioxidant, antiulcer, immunomodulatory, antibacterial, antifungal 
effects and modulate inflammation by promoting the wound healing 
and inhibition of platelet aggregation [9-11].  

Therapeutic potential of phytosterols 

PSs as an additive therapy proves to have a good therapeutic 
potential in non-alcoholic fatty liver disease showing improvement 
in LDL cholesterol and liver enzymes [12]. They act by reducing 
intestinal absorption of cholesterol and thus regulate the LDL-
cholesterol levels in humans. This mechanism is mediated by certain 
mechanisms like 1) Reducing the amount of cholesterol for 
absorption by solubilising it in the intestinal lumen, 2) Modifications 
in the expression of Niemann-Pick C1-like 1 protein which reduce 
cholesterol transport and promote its efflux from the enterocytes to 
the intestinal lumen, 3) Trans intestinal cholesterol excretion (TICE) 
removes the cholesterol from body [13]. In a preclinical study, male 
C57BL/6 J mice were administered with 3.1% PS and high-fat diet 
supplementation for three weeks shown a decrease in very-low 
density lipoprotein (VLDL) secretion [14]. PSs play a crucial role in 
neurodegenerative diseases. Phytosterols crosses the blood brain 
barrier and modifies the pathways related to neurodegeneration in 
the brain. Campesterol, beta sitosterol and stigmasterol are used as a 
prognostic biomarker for the neurodegenerative disorders like 
Alzheimer’s disease [15]. Study performed by Rui et al. had 

documented that a high-cholesterol diet reduce the cognitive 
performance in animal models [16]. In this study, rats were fed for 6 
mo with a high cholesterol diet and 2% g/100 g PS has shown reduced 
serum lipid levels, improved cognitive performance, triggered an 
increase in pyramidal cells number. Plasma and hepatic triglycerides 
(TG) levels were altered by the treatment with phytosterols in 
laboratory animals. In a study performed by Rideout et al., Syrian 
golden hamsters fed with a high-fat diet and 2% w/w PSs for 6 w and 
their TG in blood plasma were found to be decreased [17]. 

PSs has the ability of promoting glucose metabolism by activating 
the AMP-activated kinase (AMPK) or peroxisome proliferator-
activated receptors (PPARs) in transcriptional regulation pathways 
[18]. A limited rise in blood glucose scale after oral administration of 
high glucose concentration and increased insulin response was 
observed. Study performed on zucker diabetic fatty rats by giving 5-
campestenone (0.6%) as dietary supplement has shown minimal 
rise in blood glucose scale with improved insulin response. ß-
sitosterol (20 µM) administration also leads to rise in glucose intake 
by GLUT4 translocation to the plasma membrane [19]. A study in 
Db/Db mice fed with 0.3% 5-campestenone for eight weeks has 
documented a sharp decline in the blood glucose levels and 
inhibition of glucose elimination [20]. 

Phytosterols have anticancer properties which stimulates apoptosis 
by interaction with cell targets. A preclinical study on rats shows 
that beta sitosterol isolated from Asclepias curassavica L. has dose 
related effectiveness in colon rectal cancer [21]. Researches proved ß-
sitosterol supplementation cause apoptosis by leading to an increase 
in FAS protein expression, caspase 8 and tumor necrosis factor in 
MCF-7 and MDA-MB-231 breast cancer cells [22]. ß-sitosterol and 
daucosterol from Grewia tiliaefolia have the ability to promote 
apoptosis in A549 lung cancer cells by arresting the cell cycle at the 
G2/M phase [23]. ß-sitosterol interferes with the DNA fragmentation 
in the cervical cancer cells in a dose dependent manner.  

Phytosterols being similar in structure competes with cholesterol for 
absorption in the intestine and reduces the LDL cholesterol absorption 
leading to lipid lowering property [24]. Many formulations with 
suitable drug delivery vehicles are analysed for oral delivery of 
phytosterols without affecting its therapeutic efficacy. Formulations of 
phytosterols incorporated in lecithin micelles, water-dispersible 
phytosterols with fatty acids and polysorbate composition were able 
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to reduce the serum LDL-cholesterol more efficiently [25, 26]. Nano 
emulsions, nanoparticles, micro particles, microcapsules, and micelles 
are some of the formulation approaches used for phytosterols delivery 
[27]. However, besides increased therapeutic efficacy, the safety and 
tolerability of these formulations are concerned to phytosterols 
oxidation products. The prevention of phytosterols oxidation products 
in the formulation is the major challenge. The studies regarding the 
ability to reduce phytosterol oxidation products are insufficient [28].  

Bioavailability of phytosterols 

The most challenging part concerned about phytosterols was 
bioavailability. Phytosterols absorption and the concentration of 
circulation over the body were lesser in human intestine compared 
to cholesterol because of its selectivity and return through intestinal 
transporters [29]. The absorption of the phytosterols are influenced 
by several factors like solubility, chemical structure, type of 
phytosterol as steryl glycoside, sterol or stanol, hydrogenation 
process, preparation and genetic factors. Despite its studies on wide 
variety of interesting pharmacologic effects the bioavailability of 
phytosterols remain as a limiting aspect [30]. The presence of 
polycyclic nucleus, hydroxyl group at C-3 and C-17 side chain in the 
structure of phytosterols. The physical and chemical modification of 
phytosterols enhances the bioavailability. A biologically active 
substance could be customized into a nano scale delivery system in 
order to reach its target site. Chemical modification of PSs could be 
done by esterification and physical modification by 
microencapsulation. Low solubility and high melting point affects 
the bioavailability. Physical changes by encapsulation of 
phytosterols in nanodelivery systems favours dissolution in 
gastrointestinal tract and improve the bioavailability [31]. 

Systematic review of phytosterols selected for the study 

16 phytosterols were selected in this study and the structures were 
obtained using chimera software table 1. The drug-likeness 
parameters like molecular weight and size, melting and boiling 

points, hydrogen bonding will determine the pharmacological 
behaviour a compound in aspects of its bioavailability, toxicity, 
metabolic activity, etc. Molinspiration cheminformatics tool is 
employed to evaluate the drug likeness properties of the selected 
phytosterol compounds [32]. The “drug likeness” is defined as the 
balance between molecular and structural properties of a chemical 
compound that determines whether that compound is considered as 
a “drug” [33]. Log P value is calculated for all the 16 selected 
compounds. The positive log P value indicates that the lipophilic 
nature (need to cross BBB). Most of the compounds exhibited high 
logP values indicating better lipophilic nature; except digitonin has 
negative value and 5 other compounds have log P values less than 5. 
The water solubility values of all the compounds were found to be 
negative; thus indicating their low hydrophilic nature table 2. 

Swiss ADME software is employed in order to understand the 
pharmacokinetic and toxicity parameters of a lead compound in the 
initial drug discovery process itself so as to avoid hindrances in the 
later stages [34]. The ADME/Toxicity properties depend on the 
physicochemical parameters namely lipophilicity (logP), molecular 
weight, polar surface area, molar refractivity and water solubility. 
The intestinal absorption of orally active drug like compound is 
mostly assessed by Caco-2 cell model and MDCK (Madin Darby 
canine kidney) cell. The results of Caco-2 model were almost 
compatible with the standard human intestinal absorption values. 
The blood brain barrier penetration of a compound explains its 
therapeutic ability in the central nervous system; whereas, drug 
efficacy and disposition is well explained by the in vitro plasma 
protein binding model. Most of the compounds have their plasma 
protein binding values low; thus indicating their free distribution 
nature. Formulation and ease of handling of a chemical compound 
depends on its water solubility. Oral absorption of a drug is 
proportional to its water solubility; while, a parenteral drug must be 
highly water soluble to deliver its active constituents in small 
volumes. All the PSs shows negative values and hence moderately 
water soluble table 2. 

 

Table 1: Physical properties 

Plant 
steroids 

Structure  Molecular 
formula 

Molecular 
weight 

Synonym  Log p Boiling 
point  

Melting 
point  

Phase 
of the 
study 

Therapeutic 
uses 

Campester
ol [1] 

 

C28H48O 400.7 Campesterin
, Campest-5-
en-3beta-ol, 
Ergost-5-en-
3-beta-ol 

9.972 489.00 
to 
490.00 
°C 

157.5 °C Observa
tional 
studies 
[2, 3] 

Diagnosis of 
sitosterolemia 
[4], for the 
prevention of 
cancers and 
cardio metabolic 
diseases [5], 
cholesterol 
absorption 
biomarker [6] 

Ergosterol 
[7] 

 

C28H44O 396.6 Provitamin 
D2, 
Ergosterin, 
ergosta-
5,7,22-trien-
3-ol 

8.86 250 °C 
at 0.01 
mmHg 

170 °C  Biological 
precursor of 
vitamin D2, 
antirachitic 
vitamin  

Stigmaster
ol [8] 

 

C29H48O 412.7 Beta-
stigmasterol
, stigmasta-
5,22-dien-3-
ol, 
stigmasterin 

9.43 501.1±1
9.0 °C at 
760 
mmHg 

170 °C Animal 
study 
[9], 
observa
tional 
human 
studies 
[10-12] 

Cholesterol 
lowering 
activity, anti-
inflammatory 
action [13], anti-
oxidant action 
[10] 

Beta-
Sitosterol 
[14] 

 

C29H50O 414.7 Beta-
sitosterol, 
Cupreol, 
cinchol, 
harzol, 
Rhamnol, 
Azuprostat, 
Prostatol, 
sobatum,  
beta-
sitosterin 

10.48
2 

498 to 
501 °C 
@760 
mmHg 

143.5 °C Animal 
studies 
[15], 
observa
tional 
human 
studies 
[16-19] 

Anti-oxidant 
activity, anti-
cancer property 
[15], mitigation 
of benign 
prostatic 
hyperplasia 
[18], cholesterol 
lowering 
activity [17]. 
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Plant 
steroids 

Structure  Molecular 
formula 

Molecular 
weight 

Synonym  Log p Boiling 
point  

Melting 
point  

Phase 
of the 
study 

Therapeutic 
uses 

Brassicaste
rol [20] 

 

C28H46O 398.7 Brassicasteri
n, ergosta-
5,22E-dien-
3-ol 

9.679 488 to 
489 
°C@760 
mmHg 

150-
151 °C 

In vitro 
and in 
silico 
studies 
[21] 

Anti-infective 
property, 
cerebrospinal 
fluid biomarker 
for Alzheimer’s 
disease [22] 

Sarsasapog
enin [23] 

 

C27H44O3 416.6 Parigenin, 
Sarsagenin, 
Sarsapogeni
ne 

6.210 516.60 
°C 
@760 
mmHg 

200-
201.5 °C 

In vitro 
studies 
[24] 

Anti-tumor and 
anti-depressant 
activity [24], 
anti-
amyloidogenic 
action in 
Alzheimer [25] 

Cucurbitaci
n B [26] 

 

C32H46O8 558.7 Amarine, 
Datisca 
principle B, 
Cucurbitacin 
B hydrate 

 546.74 
°C 

184-
186 °C 

In vitro 
and in 
vivo [27, 
28] 

Anticancer 
activity [28, 29], 
inhibits colon 
cancer [27] 

Diosgenin 
[30] 

 

C27H42O3 414.6 Nitogenin, 
dioscoreasa
pogenin, 
3beta-
hydroxy-5-
spirostene 

6.602 527.11 
°C 

205.5 °C observa
tional 
human 
studies 
[31-33] 

Anticancer 
activity, anti-
inflammatory 
and, anti-
infective activity 
[34], 
neuroprotective 
action in 
Alzheimer’s and 
Parkinson 
disease, 
enhances 
cognitive 
function [35] 

Ginsenosid
e Rg1 [36] 

 

C42H72O14 801.0 Sanchinosid
e C1, 
Panaxoside 
A, 
dammarane,
-D-
glucopyrano
side 

1.670 902.70 
°C @ 
760 
mmHg 

315-
318 °C 

In vitro 
studies[
37] 

Antidiabetic 
effect, anti-
inflammatory, 
hepatoprotectiv
e and 
Neuroprotective
, Anti-
angiopathy[37] 

Hecogenin 
[38] 

 

C27H42O4 430.6 Hocogenin 4.22 548.9±5
0 °C at 
760 
mmHg 

266.5 °C Animal 
studies 
[39] 

Anti-helminthic 
activity [39], 
anti-oxidant, 
anti-
inflammatory 
action and 
gastro 
protective 
action [40] 

Jervine 
[41] 

 

C27H39O3 425.6 Iervin, 
Jerwiny, 11-
Ketocyclopa
mine  

3.46 592.5±5
0 °C at 
760 
mmHg 

243.5-
244.5 °C 

In vitro 
studies 

It is teratogen 
that inhibits 
smoothened an 
integral part of 
hedgehog 
signalling 
pathways [42] 
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Plant 
steroids 

Structure  Molecular 
formula 

Molecular 
weight 

Synonym  Log p Boiling 
point  

Melting 
point  

Phase 
of the 
study 

Therapeutic 
uses 

Peiminine 
[43] 

 

C27H43NO3 429.6 Verticinone, 
Fritillarine, 
Zhebeinone, 
Raddeanine, 
Kashmirine, 
peininine 

4.011 567±50 
°C at 
760 
mmHg 

212-
213 °C 

In vitro 
studies 
[44, 45] 

Acts as chemo 
sensitizer for 
Adriamycin in 
gastric cancer 
[44],  

Guggulster
one [46, 
47] 

 

C21H28O2 312.45 Guggulstero
nes EandZ 

3.65 463.3±4
5 °C at 
760 
mmHg 
 

E 
isomer-
170-
171 °C 
Z 
isomer-
188-
190 °C 
 

Observa
tional 
and 
Animal 
study 
[48, 49] 

Provides 
cardiovascular 
protective effect 
by its 
hypolipidemic, 
anti-
inflammatory 
and anti-oxidant 
action [50], anti-
cancer property 
[49] 

Digoxin 
[51] 

 

C41H64O14 780.9 Lanoxin, 
digacin, 
davoxin, 
digosin, 
cardiogoxin, 
rougoxin, 
cordioxil, 
eudigox, 
lanacrist, 
vanoxin 

2.37 931.60 
°C 
@760.0 
mmHg 

230-
265 °C 

Observa
tional 
studies 
[52-56] 

For treatment of 
atrial 
fibrillation[54] 
chronic heart 
failure [53] 

Digitoxin 
[57] 

 

C41H64O13 764.9 Digitoxoside
, unidigin, 
Digitoksin, 
cardidigin, 
carditoxin, 
coramedan, 
crystodigin, 
carditalin, 
digitalin, 
digitrin 

1.85 902± °C 
at 760 
mmHg 

493 to 
495 °F 
256-
257 °C 
(anhydr
ous) 

Observa
tional 
studies 
[58-60], 
In vitro 
studies 
and 
animal 
study 
[61] 

Antiarrhythmic 
agent [60], 
treatment for 
congestive heart 
failure [58, 59] 

Digitonin 
[62] 

 

C56H92O29 1229.3 Digitin 230-
240 °C 

788.4 °C 446 to 
464 °F 

In vitro 
studies 
[63-66] 

Biological 
detergent 
[65], induces 
membrane 
permeability 
[63] 

 

Table 2: In silico predicted properties 

S. 
No. 

Plant steroids Human 
intestinal 
absorption 

CaCo-2 Bioavailab
ility score 

Ames 
mutagen
esis 

Water solubility 
Log S 

Plasma 
protein 
biding 
(100%) 

Acute oral 
toxicity 
(Kg/mol) 

Molar 
refractivit
y 

Lipophilicyity 
Log PO/W 

(WLOGP) 

1 Campesterol 0.9930 0.6088 0.585 0.8600 -4.81  
Moderately soluble  

1.109 3.138 128.42 7.63 

2 Ergosterol 0.9950 0.6576 0.542 0.8400 -4.692 moderately 
soluble  

1.018 3.706 127.47 7.33 

3 Stigmasterol 0.9914 0.5455 0.5571 0.8300 -4.703 
Moderately soluble 

1.185 3.285 132.75 7.80 

4 Sitosterol 0.9930 0.5385 0.5286 0.8700 -4.703 
Poorly soluble 

1.124 3.414 133.23 8.02 

5 Brassicasterol 0.9914 0.6076 0.5714 0.8700 -4.692 
Moderately soluble 

1.116 3.195 127.95 7.41 

6 Sarsasapogeni
n 

0.9294 0.5138 0.5429 0.8100 -5.182  
Moderately soluble 

0.941 3.252 122.07 5.79 
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S. 
No. 

Plant steroids Human 
intestinal 
absorption 

CaCo-2 Bioavailab
ility score 

Ames 
mutagen
esis 

Water solubility 
Log S 

Plasma 
protein 
biding 
(100%) 

Acute oral 
toxicity 
(Kg/mol) 

Molar 
refractivit
y 

Lipophilicyity 
Log PO/W 

(WLOGP) 

7 Cucurbitacin B 0.9895 0.7257 0.6571 0.7200 -4.504 Moderately 
soluble 

1.008 5.214 150.94 3.50 

8 Diosgenin 0.9482 0.5112 0.6143 0.9100 -6.909 
Moderately soluble 

1.039 2.97 121.59 5.71 

9 Ginsenoside 0.6476 0.8777 0.7571 0.7400 -4.303 0.853 3.993 205.81 1.12 
10 Hecogenin 0.9357 0.5126 0.6429 0.7800 -4.59 

Moderately soluble 
0.774 3.012 122.27 4.97 

11 Jervine 0.9789 0.5523 0.5143 0.6700 -3.999 
Moderately soluble 

0.96 3.327 127.21 3.80 

12 Peiminine 0.9638 0.5621 0.5857 0.7000 -2.445 Soluble  1.008 3.332 128.33 3.51 
13 Gugglusterone 0.9950 0.8896 0.5714 0.9500 -4.367 0.976 2.922 93.54 4.64 
14 Digoxin  0.8851 0.9372 0.7143 0.7400 -4.336 Soluble 0.536 5.056 196.10 2.22 
15 Digitoxin 0.8851 0.9257 0.8286 0.7500 -5.066 Soluble 1.055 5.237 194.94 3.25 
16 Digitonin -0.7034 0.8742 0.7571 0.7529 -3.414 0.733 5.015 280.34 -6.50 

 
Table 3: Experimental pharmacokinetics 

S. 
No. 

Phytoste
roids 

AUC Cmax Tmax t1/2 Volume 
of 
distribut
ion 

Clearance Species Route 
of 
admini
stration 

No. of 
subject
s (n) 

Dose Bioavai
lability 

1 Campeste
rol [69] 

AUC 0-t 
120±46.1 ng. 
h/ml 

1250±512 
ng/ml 

72 (36-72 
range) (h) 

- - - Rats Oral 4 500 mg/kg 
insadol 
extract 

- 

2 Ergostero
l [70] 

AUC (0-36h) 
22.29±5.08 (g 
h ml-1) 

22.27±0.1
9 (g/ml) 

8.00±1.18 
(h) 

5.90±1.
41 
(h) 

- - Rat Oral 6 100 mg/kg - 

3 Stigmaste
rol [69] 

AUC (0-∞) 
21.8±7.86 ng 
h/ml 

246±38.2 
ng/ml 

15(9 to72 
range) 
(h) 

- - - Rat Oral 4 500 mg/kg 
insadol 
extract 

- 

4 Beta-
sitosterol 
[71] 

AUC0-∞ 
0.19 ng. h/ml 

1.8 pg/ml 17.33 (h) 72.4 (h) - - Humans Oral 12 3.8-4.2 µg 
in 15 ml 
solution 

0.41% 

5 Sarsasap
ogenin 
[72] 

AUC0-48 

17405±4398 
ng h/ml 

2114±362 
ng/ml 

6 (h) 8.7±2.2 
(h) 

- - Rats Oral 6 25 mg/kg - 

6 Cucurbita
cin B [73] 

AUC0-∞ 

52.42±29.58 
31.24±10.
50 µg/l 

0.60±0.22 
(h) 

N/A - - Rats Oral 6 4 mg/kg 10.25±5
.63 % 

7 
 

Diosgeni
n [74] 

AUC0-∞ 
4.475±0.06 µg 
h/ml 

0.5773±0.
012 
µg/ml 

1 (h) 7.563±0
.21 (h) 

- 2.5143±0.0
9 ml/h/kg 

Rats Oral 6 15 mg/kg 9±0.2 % 

AUC0-∞ 

4.957±0.44 µg 
h/ml 
 

0.6122±0.
1 µg/ml 

- 7.930±0
.37 (h) 

2.539±0.
57 ml/kg 

0.222±0.05 
ml/h/kg 

Rats Intraven
ous 
single 
dose 

6 1.5 mg/kg - 

8 Ginsenosi
de [75] 

AUC0-∞ 
279.70±81.84 
µg/l. h 

35.38±10.
33 µg/l 

4.29±0.76 
(h) 

3.09±1.
64 (h) 

848.16±4
87.89 
L/kg 

189.36±43.
49 L/h/kg 

Rats Oral 6 50 mg/kg 4.23 % 

AUC0-∞ 

661.31±151.7
8 µg/l. h 

534.97±1
05.40 µg/l 

- 6.35±4.
04 (h) 

69.23±41
.13 L/kg 

7.88±1.99 
L/h/kg 

Intraven
ous 

6 5 mg/kg  

9 Jervine 
[76] 

AUC0-∞ 

5547.95±558.
34 µg/l. h 

233.30±3
0.37 ng/l 

1.20±0.73 
(h) 

11.09±2
.35 (h) 

115.24±1
9.46 L/kg 

7.26±0.68 
L/h/kg 

Rats Oral 6 40 mg/kg  

AUC0-∞ 

1289.67±318.
46 µg/l. h 

138.40±1
9.31 ng/l 

0.13±0.08 
(h) 

8.35±5.
15 (h) 

44.15±18
.11 L/kg 

4.03±0.80 
L/h/kg 

Intraven
ous 

6 5 mg/kg 60.02 

10 Peiminin
e [77] 

AUC0-∞ 

367.2±22.35 
ng h/l 

68.80±1.6
3 ng/ml 

1.83±0.72 
(h) 

3.012±0
.16 (h) 

  Beagle 
dog 

Oral 12 1 g/kg 
Fritillariau
ssuriensis 
powder 

 

11 E-
Guggluste
rone [78] 

AUC0-∞ 
40.36±6.47 
ng. h/ml 

  0.23±0.
01 (h) 

41.87±3.
95 
L/kg 

129.06±13.
81L/h/kg 

Rabbit Intraven
ous 

3 10 mg/kg  

Z-
Guggulste
rone 

AUC0-∞ 

20.34±6.2 
ng. h/ml 

  0.35±0.
10 (h) 

145.09±6
0.6 L/kg 

     

12 Digoxin 
[79] 

AUC(

0-24h) 

25.4
±6.0 
ng. 
h/ml 

AUC(

0-∞) 

61±1
3.1 
ng. 
h/ml 

3.7±1.7 
ng/ml 

1.6±1.2 
(h) 

38±6.1 
(h) 

  Human Oral 7 1 mg  

13 Digitoxin 
[80] 

   138 (h)   Human 
study 

Oral 6 1 mg 81.5±19
.7% 

   156 (h) 0.47±0.0
7 L/kg 

2.44±0.82 
ml/min 

Intraven
ous 
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In silico toxicity prediction holds a great importance in the early 
drug discovery process as 30-40% of the drug compounds would be 
rejected at the development stage due to their unidentified toxicities. 
Ames test is a simple and reliable method to test mutagen city of a 
compound [35]. It utilises bacterium Salmonella typhimurium strains 
that carry mutations in genes for histidine synthesis. The lead 
compound is tested whether it has the ability to cause a reversion to 
growth on a histidine free medium. The values in the Ames test 
result have shown their minimal toxicity. 

Bai et al., 2018 assessed the in vivo pharmacokinetic (PK) properties 
of the phytosterol compounds [36, 37]. In this study, male wistar 
rats of 250-280 gm weight were procured housed in stainless steel 
cages (3 rats/cage) with room temperature and 12-h light/dark 
cycle. The rats were fed with standard pellets for a week and were 
fasted overnight before the commencement of experiments. 
Pentobarbital (50 mg/kg I. P) to anesthetize the rats, carotid artery 
cannulated and the blood samples collected in heparin tubes for 0, 
15, and 30 min and 1, 2, 4, 6, 8, 10, 12, and 24 h after the oral 
administration of PSs individually. The blood samples were 
centrifuged (16,000g, 5 min) and the plasma was separated and 
stored at 80 °C. The peak plasma concentrations (Cmax) and the 
time required to reach Cmax (Tmax) of PSs were recorded. The area 
under the concentration-time curve (AUC) was calculated from the 
values obtained during 0 to 24 hr using the trapezoidal rule [37]. 
The half-life (t1/2) was calculated by using the apparent elimination 
rate constant obtained from the elimination phase gradient. All the 
data was expressed as mean SD M and the significance was 
measured by student’s T-test and one-way ANOVA. The significance 
level was set at p less than 0.05. Using these values, the clearance, 
volume of distribution and oral bioavailability (BA) were calculated 
using the non-compartmental analysis (NCA) software PK Solutions 
version 2.0. All these pharmacokinetic results help the researcher to 
design the dosing calculations for clinical trials (table 3). 

CONCLUSION 

In view of the less bioavailability of phytosterols, physical or 
chemical modification can be applied to increase their 
bioavailability. Chemical modification has focussed majorly on 
esterification and physical modification has been attained by 
microencapsulation method. A physical modification by 
encapsulation process of phytosterols in nanodelivery system 
favours dissolution in gastrointestinal tract and enhances the 
bioavailability. By designing a delivery system, the biologically active 
substance can be delivered to its specific absorption site. The 
superiority of this system is that it can decrease the loss of 
biologically active substances prior to reaching the absorption site to 
enhance the bioavailability of the compound. The Swiss ADME Web 
tool used in the study helped in computation of key pharmacokinetic, 
physicochemical, drug-like and related parameters for one or more 
molecules. In one attempt, efforts were put in the application to 
implant free open-access and rapid predictive models exhibiting 
statistical predictive power, significance, straightforward translation 
to molecular design and intuitive interpretation,. These methods were 
adapted from renowned published papers or in-house original 
methods, especially developed and thoroughly benchmarked. When 
investigated together, these methods help the researchers to design 
their studies for improving the bioavailability of phytosterols. 
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