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ABSTRACT 

Objective: The objective of this study was to increase the water solubility of Dasatinib (DAS) by incorporating it into a Self-Nano Emulsifying Drug 
Delivery System (SNEDDS). Dasatinib, a Biopharmaceutics classification system (BCS) class II drug, has poor solubility in aqueous media, affecting 
its oral bioavailability. Various oils, surfactants, and co-surfactants were chosen based on solubility tests, with the highest solubility selected.  

Methods: Various compositions of oils, surfactants and co-surfactants with Smix concentrations as 1:1, 1:2 and 2:1 and there were 9 formulations 
under each of these groups with Oil: Smix concentrations of 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1. Capmul MCM, Cremophor EL, and Tween 20 
were selected as oil phase, surfactant, and co-surfactant, respectively. A pseudo-ternary phase diagram using the water titration technique 
optimized the nano-emulsification ratio. The optimized formulation was characterized and evaluated for thermodynamic stability, cloud point 
measurement, zeta potential, Poly dispersity Index (PDI), globule size, percent transmittance, robustness to dilution, and dissolution studies.  

Results: Transmittance of 95% was demonstrated by the formulation, indicating transparency and stability. The zeta potential was over 30 mV, 
indicating strong electrical stability, and the average globule size was measured to be 85 nm. The formulation was shown to be stable at body 
temperature, as evidenced by the cloud point being reported above 95 °C. The formulation maintained its stability when diluted in water, 0.1N acid, 
and phosphate buffer. The formulation contained 85% of the dasatinib, according to the drug content study. The optimized SNEDDS formulation 
significantly increased drug release in in vitro drug release experiments as compared to the pure medication. The oral bioavailability of dasatinib in 
the SNEDDS formulation was shown to be 3.24 times higher than that of the pure medication, according to in vivo pharmacokinetic tests. 

Conclusion: Consequently, the findings indicated that the formulation of dasatinib SNEDDS functions as a means of achieving increased drug 
loading, better dissolving profiles, and increased bioavailability for the BCS Class II drug dasatinib. 
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INTRODUCTION 

Chronic Myeloid leukemia (CML) is a relatively uncommon form of 
blood cancer that arises from an abnormal rearrangement between 
chromosomes 9 and 22. This translocation results in the fusion of 
the breakpoint cluster region protein(BCR) and Abelson murine 
leukemia viral oncogene (ABL) genes, leading to the formation of the 
BCR-ABL gene on chromosome 22, commonly known as the 
Philadelphia chromosome [1]. This genetic alteration gives rise to 
tyrosine kinases, pivotal enzymes responsible for initiating the 
uncontrolled proliferation of myeloid stem cells in the bone marrow 
[2, 3]. The landscape of CML treatment has witnessed notable 
advancements, with several drugs proving effective in managing the 
disease. Among these, Dasatinib (DAS) stands out as a common 
therapeutic agent [2]. Functioning as a tyrosine kinase inhibitor 
(TKI), Dasatinib works by blocking the activity of the BCR-ABL gene, 
thereby stopping the aberrant cell proliferation. Other drugs 
employed in CML therapy, such as Nilotinib, Bosutinib, Imatinib, and 
Ponatinib, share a similar mechanism of action to Dasatinib [3, 4]. 

Despite the efficacy of these drugs, their preferred mode of 
administration is through the oral route. However, challenges arise 
in the oral delivery of TKIs, particularly Dasatinib. Classified as a 
class II compound in the Biopharmaceutical Classification System 
(BCS), Dasatinib exhibits poor solubility and high permeability [5]. 
While the drug is soluble in acidic mediums, its solubility sharply 
declines at pH levels above 4. This limitation in aqueous solubility 
translates to decreased oral bioavailability, impacting the 
effectiveness of the drug in various dosage forms [6, 7] Additionally, 
Dasatinib undergoes a high first-pass metabolism, a process in 
which the drug is metabolized in the liver before reaching systemic 

circulation. This metabolism significantly decreases the 
bioavailability of Dasatinib, limiting its therapeutic potential [8]. 

One promising avenue of exploration is the use of Self-
Nanoemulsifying Drug Delivery Systems (SNEDDS). SNEDDS are 
composed of a mixture of oil, surfactant, co-surfactant, and the drug 
itself. When exposed to an aqueous medium and subjected to 
moderate agitation, these components form a nanoemulsion with 
droplet sizes ranging from 20-200 nm [9-11]. This unique formulation 
provides a solution to the solubility challenges faced by Dasatinib. In a 
SNEDDS formulation, Dasatinib exists in its solubilized state within the 
oil phase, preventing precipitation during pH changes in the 
surrounding environment. This feature is particularly advantageous 
considering the fluctuating pH levels encountered in the 
gastrointestinal tract [12–14]. Moreover, being dissolved in a lipidic 
phase, Dasatinib can be absorbed through the lymphatic system 
present in the intestine [15]. The lymphatic absorption route is crucial 
as it allows Dasatinib to bypass the first-pass metabolism, a significant 
contributor to its decreased bioavailability. By evading the initial 
metabolism in the liver, Dasatinib can enter systemic circulation more 
efficiently, potentially leading to higher concentrations of the drug at 
the target site [16–21]. 

In conclusion, this study focusing on SNEDDS formulations for 
Dasatinib represents a significant leap forward in addressing the 
challenges associated with oral administration of this crucial drug for 
CML treatment. By leveraging the unique properties of SNEDDS to 
enhance solubility and absorption, researchers aim to unlock the full 
therapeutic potential of Dasatinib. As this research unfolds, it not only 
holds promise for CML patients but also contributes to the broader 
landscape of drug delivery systems, offering potential solutions for 
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other medications struggling with solubility limitations. In the pursuit 
of elevating bioavailability, this study marks a crucial step towards 
advancing cancer treatment and improving patient outcomes. 

MATERIALS AND METHODS 

Materials 

Dasatinib, Methanol, Capryol 90, Capmul MCM, Laurglycol FCC, 
Labrafil M1944cs, Castor oil, Tween 80, Triton X 100, Triacetin, 
Tween 20, Poly EthyleneGlycol (PEG) 400, Cremophor EL, Acconon 
MC8, Cinnamon Oil. 

Analytical method 

Analytical method development using UV-spectroscopy 

Dasatinib was added to Methanol and scanned for Lambda max 
(λmax) using a UV-Vis Spectrophotometer and it was found to be 
322 nm. A primary stock solution of 1000mcg/ml of Dasatinib in 
methanol was made and concentrations ranging from 2 mcg/ml– 
12mcg/ml were prepared. These samples were used to construct a 
calibration curve for Dasatinib in Methanol [22]. 

Analytical method development using high performance liquid 
chromatography (HPLC) 

A Kromasil C18 reverse-phase column was used for the 
chromatographic separation. The mobile phase consisted of 
acetonitrile (ACN) and phosphate buffer pH 6.8 in a 45:55 v/v ratio, 
with a 10 mmol concentration at a flow rate of 1.2 ml/min. The 
analysis was conducted for ten minutes at 321 nm. To prepare the 
solution, 10 mg of dasatinib was carefully weighed and added to 10 
ml of the drug in a volumetric flask. The concentration of the 
primary stock solution was increased to 1000 parts per million 
(ppm) by adding methanol to adjust the volume. Subsequently, 
working stock solutions (10 ppm) and secondary stock solutions 
(100 ppm) were prepared using proper dilutions with methanol as 
the diluent. Stock solutions were prepared in different quantities 
using methanol as a diluent. HPLC analysis determined the peak area 
at λmax (321 nm). The calibration curve was created by averaging 
three values [23, 24]. 

Solubility studies 

The solubility of Dasatinib in each excipient was examined. An 
excess amount of the drug was added to 1 ml of each surfactant, co-
surfactant, and oil. The mixture was then vortexed to achieve 
uniform dissolution and kept in a tube rotator for 72 hour at room 
temperature. After equilibration, the samples were centrifuged at 
10,000 RPM (rotation per minute) for 10 min. The supernatants 
were suitably diluted in methanol and analyzed using an in-house 
developed UV-Vis method [25]. 

Formulation of dasatinib loaded SNEDDS 

Screening of surfactant and co-surfactant for emulsification 
ability 

Various compositions of oils, surfactants and co-surfactants were 
decided upon based on the solubility studies. These mixtures were 
prepared in 3 groups with Smix concentrations as 1:1, 1:2 and 2:1 
and there were 9 formulations under each of these groups with Oil: 
Smix concentrations of 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1. 
They were diluted several times with water to check for any visible 
signs of turbidity. Any turbidity would indicate that a nanoemulsion 
is not formed [25]. The oils and surfactants that showed the highest 
solubility concerning Dasatinib were selected.  

Construction of pseudo ternary phase diagram 

Ternary phase diagrams consist of triangles in which each corner 
represents the concentration of oil, surfactants, and co-surfactants. 
The oils and surfactants that showed the highest nanoemulsification 
power were selected for further studies. These oils and surfactants 
were combined in ratios ranging from 10% oil and 90% surfactant 
mixture to 10% surfactant mixture and 90% oil. Water was added to 
these compositions until a clear solution was obtained. The total 
volume of each composition was then added up to 100% and the 
amount of water, surfactant mixture and oil was calculated. These 

percentages were then fed into the CHEMIX software to generate a 
pseudo-ternary phase diagram [26, 27]. 

Optimization of the formula 

Based on the pseudo-ternary phase diagram that was produced, a 
range of ratios showed a nanoemulsification region. The globule size 
and PDI of these ratios were determined using the Dynamic Light 
Scattering (DLS) technique using a Zeta sizer and the optimum ratios 
were narrowed down. Each sample was diluted 100x with water and 
subjected to size analysis. The formulations that showed less globule 
size were selected for drug loading [28–30]. 

Preparation of SNEDDS 

The SNEDDS formulation was made by adding 20 mg of Dasatinib to 
the selected oil phase and vortexing until the drug was solubilized. 
The chosen surfactant and co-surfactant were then added to the oil 
phase containing the drug and subjected to vortexing until a 
homogenous mixture was obtained [29, 31, 32]. 

In vitro characterization of dasatinib loaded SNEDDS 

Zeta potential and size 

Zeta Potential and globule size were tested for the formulation 
having the lowest globule size in the blank formulations. Each 
formulation was diluted 100x with water and scanned by a zeta sizer 
to obtain the results for zeta potential and globule size [27, 33]. 

Cloud point determination 

The dasatinib loaded SNEDDS formulations were diluted 100 times 
with water and stored in Eppendorf. These eppendorfs were kept in 
a water bath whose temperature was gradually raised until the 
formulation became visibly cloudy. The temperature at which 
cloudiness appeared was recorded. It indicates the stability of the 
optimized formulation at body temperature [34, 35]. 

Percentage transmittance 

The formulations were diluted 1000 times using deionized water, 
and the percentage transmittance was recorded. Percentage 
transmittance is an important criterion in establishing the dilution 
and transparency of the formulation. This is significant because 
ultimately the formulation ends up in the gut lumen and drug 
precipitation must not occur in order to form a stable nanoemulsion 
[36, 37]. 

Robustness to dilution 

The formulations were diluted several times with varying solvents, 
namely water, 0.1N HCl and phosphate buffer. These dilutions were 
subjected to stirring at 100 RPM for 24 h and observed for any 
physical signs of phase separation. If the drug is not solubilized 
properly in the lipidic phase, there is a high chance of precipitation. 
The solvent capacity of the oil phase decreases upon dilution. 
Therefore, to determine the stability of the system, dilution tests in 
various solvents are crucial [36, 38, 39]. 

Thermodynamic stability 

The formulations were stored at-20 °C for 2 days in a freezer 
followed by 50 °C for 2 days in a hot air oven (Freeze-thaw cycles) 
and this cycle was repeated three times. At the end of the cycles, the 
formulations were physically examined for any signs of physical 
degradation [39–41]. 

Drug content determination 

The percentage drug content should be uniform. One part of the 
formulation was diluted with 9 parts of methanol. This mixture was 
then centrifuged at RPM of 10,000 for a total of half an hour. The 
supernatant was diluted accordingly. The drug content was 
determined using a UV-vis Spectrophotometer [36, 42–44]. 

Dissolution studies 

The drug loaded SNEDDS formulation and powdered form of 
Dasatinib, both equivalent to 10 mg of the drug were added into 
hard gelatin capsules (HGC) of size “00”. These HGC were dropped in 
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900 ml of dissolution medium of pH 1.2 and 6.8 at 37±0.5 °C in USP 
type II (paddle) apparatus with 50 RPM. Aliquots of 1 ml were 
collected at predetermined time points, and fresh buffer media (1 
ml) was incorporated after each sampling. Membrane filters were 
used for filtration of each sample. Drug release of Dasatinib SNEDDs 
was measured using UV spectrophotometrically at λmax 322 nm, 
after appropriate dilution with media against an equal amount of 
blank [36, 45, 46]. 

Bioanalytical method development for the quantification of 
dasatinib in wistar rat plasma and tissue homogenate 

Using the protein precipitation method, dasatinib was extracted 
from the plasma or tissue homogenate of Wistar rats. In short, 5 μl of 
the corresponding standard calibration solution was added to 95 μl 
of blank plasma or tissue homogenate in a labeled tube. After 
vortexing each tube, 20 μl of the internal standard (Ketoconazole, 
200 μg/ml) was added and mixed. Next, each sample was 
centrifuged for 10 min at 4 °C at 20,000 rpm. Following 
centrifugation, the supernatant was injected into autosampler vials 
and monitored at 321 nm for chromatographic analysis [47]. 

In vivo pharmacokinetics study 

In our study on the pharmacokinetics of dasatinib and dasatinib 
SNEDDS, we utilized wistar rats weighing 250±50g maintained at a 
temperature of 25±1 °C with access to water prior to the 
experiment. All institutional and national guidelines for the care and 
use of experimental animals were strictly followed. Prior to the 
commencement of the study, approval was obtained from the 
Institutional Animal Ethics Committee (IAEC/KMC/23/2022) of 
manipal academy of higher education. The handling and care of the 

animals were in accordance with institutional and national 
regulations. The study involved administering Dasatinib suspension 
and dasatinib SNEDDS to two groups of Wistar rats. The rats were 
given 10 mg/kg of dasatinib orally via gavage using the appropriate 
formulations. Blood samples (0.2 ml) were collected from the retro-
orbital venous plexus at pre-determined time intervals following 
oral administration. The plasma was separated by centrifuging the 
blood samples for 10 min at 20,000×g RPM in a centrifuge set at 4 °C. 
Rat plasma concentrations were monitored concurrently using 
HPLC-UV technology [48, 49]. 

Statistics 

A one-way ANOVA was used for the statistical analysis (GraphPad Prism 
6.0). Tukey's post-hoc test revealed significant differences between the 
treatment groups; p<0.05 indicated statistical significance. 

RESULTS AND DISCUSSION 

Analytical method development for dasatinib 

The method developed using UV-spectroscopy and HPLC showed 
high accuracy and precision. The developed methods were 
successfully applied to the analysis of dasatinib in SNEDDs 
formulations, yielding consistent and reliable results. 

Solubility studies 

The phase solubility studies were carried out by dissolving excess 
amounts of the drug in different oils, surfactants, and co-surfactants 
(table 1). The excipients that displayed a high amount of 
solubilization were selected for further studies which aligned with 
the study done previously [50, 51]. 

 

Table 1: Solubility of dasatinib in different excipients 

S. No. Name of excipient Solubility of dasatinib (mg/ml) (mean±SD)* 
1 Capryol 90 3.54±0.16 
2 Capmul MCM 9.48±0.51 
3 Lauroglycol FCC 0.566±0.08 
4 Labrafil M1944cs 0.409±0.02 
5 Castor oil 0.61±0.05 
6 Tween 80 4.12±0.19 
7 Triton X 100 8.87±0.32 
8 triacetin 0.35±0.06 
9 Tween 20 15.79±0.24 
10 PEG 400 15.1±0.72 
11 Cremophor EL 12.21±0.36 
12 Acconon 11.167±0.55 
13 Cinnamon Oil 5.89±0.31 

*Each value is represented as mean±SD; n = 3. 

 

Formulation of dasatinib loaded SNEDDS 

Screening of surfactant and co-surfactant for emulsification 
ability 

The excipients were selected based on the highest solubility of 
Dasatinib in them. Various combinations of oils and surfactant/co-
surfactant (Smix) were selected at random from the ones showing 
high solubility to determine the best composition. 27 different ratios 
were made for each composition and subjected to water dilution to 
determine emulsification ability as shown in table 2. 

The oil that was able to achieve nanoemulsification with the help of 
surfactant was Capmul MCM. Capmul MCM exhibited transparency 
upon dilution with two Smix combinations, Tween 80 and Acconon 
MC8 and with Tween 20 and Cremophor EL; Composition 4 and 
Composition 5 respectively. These were the compositions that were 
chosen for further studies and for plotting pseudo-ternary phase 
diagrams. The SNEDDS formulation was created with the oil Capmul 
MCM, the co-surfactant Tween 80 or Tween 20, and the surfactant 
Acconon MC8 or Cremophor EL in conjunction with earlier research 
[52, 53]. 

 

Table 2: Screening of various compositions (27 different ratio) for nanoemulsification ability 

Composition number Formulation Composition Nano emulsion 
1 F1 to F27 Cinnamon oil, Tween 80, PEG 400 No 
2 F28 to F54 Cinnamon oil, Capmul MCM, PEG400 No 
3 F55 to F81 Capmul MCM, Tween 80, PEG 400 No 
4 F82 to F108 Capmul MCM, Tween 80, Acconon MC8 Yes 
5 F109 to F135 Capmul MCM, Cremophor EL, Tween 20 Yes 
6 F136 to F162 Capmul MCM, Cremophor EL, Labrafil 1944CS No 
7 F163 to F189 Capmul MCM, Cremophor EL, Tween 80 No 
8 F190 to F216 Cinnamon Oil, Capmul MCM, Tween 80 No 
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Plotting of pseudo ternary phase diagram 

Pseudo ternary phase diagram was plotted shown in fig. 1 and 2 to 
determine a range of Capmul MCM, Cremophor El, Tween 20 and 
Capmul MCM, Acconon MC8 and Tween 80 required for the formation 
of nanoemulsion when loaded with Dasatinib respectively. The 
boundary ratios for the formation of nanoemulsion can be narrowed 
by using this diagram. In composition 4 (table 3), Acconon MC8 and 
Tween 80 were mixed in the ratios 1:1, 1:2 and 2:1 to prepare the 
Smix. Similarly, in Composition 5 (table 4), Tween 20 and Cremophor 
EL were taken in 1:1, 1:2, and 2:1 ratio to prepare Smix.  

Numerous formulations were prepared with compositions 4 and 5 in 
which Capmul MCM was added ranging from 10% to 90%. These 
formulations were then subjected to a water titration method on 
which distilled water was added to each formulation in 5µl* 
amounts until a transparent solution was obtained. The percentage 
of water, Smix and oil was then calculated. These values for 

percentage were fed into the CHEMIX software to construct the 
pseudo-ternary phase diagram [54, 55]. 

The coloured areas in the diagrams indicate nanoemulsification 
region. The Smix ratio diagram showing largest Nanoemulsification 
area, or the coloured region was selected. In the case of composition 
4, Smix ratio 1:2 was selected and in the case of Composition 5, Smix 
ratio 2:1 was selected. 

Globule size and PDI determination 

The ratios that fell between the nanoemulsification region in the pseudo 
ternary phase diagram were prepared for Composition 4 and 
Composition 5 without the drug depicted in table 5. They were diluted 
100 times with distilled water and their size and PDI were checked to 
further narrow down the optimized ratio. The research has noted that 
droplet sizes in SNEDD devices range from 20 to 200 nm. The PDI value 
for self-nanoemulsifying systems should be less than 0.4 [52, 56]. 

 

Table 3: Water titration recordings for composition 4 (Oil-Capmul MCM, Smix-acconon MC8 and tween 80) 

Smix ratio %Oil %Smix % Water 
1:1 26.19 56.93 16.88 

35.92 50.19 13.89 
45.01 41.93 13.06 
53.68 33.34 12.98 
61.71 24.64 13.64 
68.37 15.92 15.7 
75.85 7.85 16.3 

1:2 27.23 59.6 13.17 
35.19 49.5 15.31 
46.92 44.01 9.07 
55.98 35 9.02 
63.23 25.42 11.36 
69.45 16.28 14.27 
77.71 8.1 14.19 

2:1 36.04 50.02 13.94 
44.37 41.04 14.59 
54.28 33.47 12.25 
63.45 25.16 11.39 
69.6 16.1 14.3 
78.45 8.06 13.49 

 

 

Fig. 1: Pseudo ternary phase diagram of composition (Capmul MCM, Cremophor El, Tween 20) 

 

 

Fig. 2: Pseudo ternary phase diagram of composition (Capmul MCM, Acconon MC8 and tween 80) 
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Table 4: Water titration recording for composition 5 (Oil-capmul MCM, Surfactant-cremophor EL, Co surfactant-tween 20) 

Smix ratio % Oil % Smix % Water 
1:1 37.58 44.25 18.17 

44.46 34.9 20.64 
54.18 28.35 17.47 
63.09 21.22 15.69 
71.34 14 14.66 
80.8 7.05 12.15 

1:2 38.3 46.89 14.81 
49.76 40.62 9.62 
59.77 32.52 7.71 
67.21 23.51 9.28 
75.48 15.4 9.12 
83.46 7.57 8.97 

2:1 32.46 57.07 10.46 
42.16 47.65 10.19 
51.88 39.09 9.03 
60.7 30.49 8.81 
71.13 22.97 5.9 
75 14.13 10.88 
82.46 6.9 10.63 

 

Table 5: Globule size and PDI of various ratios of composition 4 (Capmul MCM, Acconon MC8, Tween 80) and composition 5 (Capmul MCM, 
cremophor EL, Tween 20) 

Composition 4 (Smixratio 1:2) Oil: Smix ratio Globule size (nm)* PDI* 
F91 1:9 450.12±0.36 0.326±0.04 
F92 2:8 480.09±0.96 0.219±0.07 
F93 3:7 500.00±0.24 0.428±0.09 
F94 4:6 520.3±0.86 0.684±0.05 
F95 5:5 525.00±0.55 0.344±0.04 
F96 6:4 622.00±0.76 0.612±0.01 
Composition 5 (Smix ratio 2:1) Oil: Smix ratio Globule Size (nm) PDI 
F127 1:9 35.00±0.68 0.284±0.11 
F128 2:8 57.88±0.51 0.541±0.32 
F129 3:7 74.07±0.63 0.311±0.03 
F130 4:6 74.56±0.48 0.344±0.13 
F131 5:5 145.5±0.37 0.315±0.04 
F132 6:4 259.7±0.14 0.412±0.09 

*Each experiment is performed in Triplicates; values are expressed as mean±SD. 

 

Based on the globule size and PDI analysis, it was clear that 
Composition 4 showed a higher size of globules and was an 
unsuitable choice for further studies. Composition 5 showed globule 
sizes mostly within 200 nm and hence was selected. It can also be 
seen from the above-stated test results that the 5:5 Oil: Smix ratio is 

the last ratio to be less than 200 nm. As regulatory authorities do not 
permit more than 60% usage of surfactants in oral formulations, the 
two ratios that were selected for drug loading were 4:6 (F130) and 
5:5 (F131) of Composition 5 i. e., Capmul MCM, Tween 20 and 
Cremophor EL. 

  

 

Fig. 3: IR spectrum of dasatinib 
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Drug excipient compatibility tests 

ATR FTIR was performed on the Dasatinib (fig. 3), Dasatinib-loaded 
samples of Oil: Smix ratio of 4:6 (F130) and 5:5 (F131) and placebo 
samples (fig. 4). The IR spectrum showed that there were significant 
changes and shifts in the peaks observed in the pure drug spectrum 
and the drug-loaded SNEDDS spectrum of F130 and F131. This can 
be attributed to the fact that the drug, Dasatinib, has been 

completely solubilized in the lipid phase and will not precipitate out 
when diluted with water. It was also noted that there was no 
interaction between drug and excipient as the peaks of placebo 
SNEDDS and drug-loaded SNEDDS do not show a significant change 
or shifts in both formulations. Certain functional groups that are 
characteristic of the drug were seen in the IR spectrum of both F130 
and F131 formulations as described in table 6, and not in the blank 
formulations, further confirming the presence of Dasatinib [19, 57]. 

 

 

Fig. 4: IR spectrum of A. Blank SNEDDS Oil: Smix-4:6 (F130); B. Drug loaded SNEDDS Oil: Smix 4:6 (F130); C: IR spectrum of blank SNEDDS 
Oil: Smix-5:5 (F131); D. Drug loaded SNEDDS oil: Smix 5:5 (F131) 

 

Table 6: FTIR characteristics peaks in dasatinib and SNEDDS 

Functional groups IR frequencies of pure drug (cm-1) IR frequencies of drug loaded SNEDDS (cm-1) 
C=O 1620 1615.96 
CH=CH 1582 1583 
C-H, CH=CH 1456 1417 

 

Globule size and zeta potential 

The optimized SNEDDS formulation F130 had a globule size of 83.52 
nm and a zeta potential of 31.6mV. The formulation F131 had a 
globule size of 201.5 nm and a zeta potential of 36.5mV. Both 
formulations F130 and F131 have a zeta potential above 30mV 
which is essential for maintaining the stability of nanoemulsion. The 
electrostatic repulsion experienced by the particles in the 
formulation is well within the required range to achieve a stable 
system. However, the globule size of F131 was significantly higher 
than F130 [56]. 

Cloud point measurement 

Cloud Point gives an idea about the effect of temperature on the 
formulation and its phase behaviour. The impact of temperature is 
one of the more critical parameters to be evaluated when developing 
nanoemulsions. It is the temperature above which the formulation 
does not remain transparent. An ideal formulation is supposed to 
retain the single-phase clarity at storage temperature and at the 
temperature it is to be used in. Phase separation is a common 
phenomenon at high temperatures due to reduction in solubilization 
capacity of surfactant. In case of SNEDDS, the cloud point should be 
greater than 37 °C as that is the body temperature and the 
formulation must remain stable in a single phase in the body [58]. 

The formulations F130 and F131 did not turn cloudy upon heating 
up to 95 °C hence it was concluded that both the formulations would 
remain stable at body temperature.  

Percentage transmittance 

The percentage of F130 and F131 was measured at 325 nm with UV 
spectrophotometer using purified water as blank. The results 
indicated that the percentage transmittance of F130 was 95% and of 
F131 was 90%. These results indicate that the nanoemulsion formed 
had high clarity which is a significant criterion for nanoemulsion. 
This transparency can be attributed to the smaller globule size as 
bigger globules decrease the transparency and thereby the value of 
percentage transmittance [59]. These results indicated that the 
formulation contained nano globules in the SNEDDS solution. 

Robustness to dilution 

After diluting both SNEDDS formulations (F130 and F131) up to 
1000 times in different dissolution media and storing for 24 h, the 
systems remained stable as represented in table 7. There was no 
physical evidence of phase separation or drug precipitation even 
after 24 h. This was a strong indicator that the formulations were 
stable. This demonstrated that both formulations could tolerate 
different dilution scenarios [60]. 
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Table 6: Robustness to dilution test of F 130 and F 131 

Buffer Formulation 130 Formulation 131 
50x 100x 250x 1000x 50x 100x 250x 1000x 

Water Stable Stable Stable Stable Stable Stable Stable Stable 
0.1N HCl Stable Stable Stable Stable Stable Stable Stable Stable 
Phosphate Buffer Stable Stable Stable Stable Stable Stable Stable Stable 
 

Thermodynamic stability 

Both F130 and F131 were subjected to 3 consecutive freeze thaw 
cycles and were subsequently observed for phase separation or drug 
precipitation. No sign of phase separation or precipitation was 
observed hence it was clear that the formulation is resistant to 
deterioration under environmental stress. 

Drug content determination 

The drug content in F 130 and F 131 was determined using UV 
Spectrophotometer and was found to be 87.9% in F130 and 63.2% 
in F131. This confirmed that F130 had higher accuracy in dose 
formulation. Based on the results of globule size measurement, 
percentage transmittance, and drug content determination, it was 
noted that F130 was the more robust and optimized formulation and 
was selected for further studies [60]. 

Dissolution studies 

In vitro release studies of F130 were carried out in 900 ml 
dissolution buffer using USP type II apparatus. The dissolution 
medium were pH 1.2 hydrochloric acid buffer and pH 6.8 phosphate 
buffer. The paddle speed was 50 RPM and temperature was 37°C 
throughout the study. The final formulation would be administered 
orally and hence the dissolution profile of the drug and optimized 
formulation was compared in two dissolution media. 0.1N HCl was 
used to mimic the condition in the stomach at pH1.2. Similarly, 
phosphate buffer was used to mimic the conditions in the intestine 
at pH 6.8. The comparative dissolution profile of pure drug and 
optimized SNEDDS formulation was calculated and presented in fig. 

5 and 6 below. The in vitro release studies showed a higher amount 
of drug release from SNEDDS as compared to the pure drug in all 
dissolution media. The plausible explanation for this enhanced drug 
release could be the increased solubilization of drug in lipid phase 
[58]. The drug already exists in its solubilized state, thus bypassing 
the rate limiting step of dissolution. 

In vivo pharmacokinetics study 

An important factor that influences a drug's therapeutic 
effectiveness is its increased oral bioavailability. In a study using 
Wistar rats, the pharmacokinetic properties of Dasatinib suspension 
and SNEDDs formulation were investigated. After administering 
these samples orally, the plasma concentration of Dasatinib was 
measured over time to create concentration curves and determine 
related pharmacokinetic characteristics. The drug-time curve shown 
in fig. 7 and table 8 indicated that 2.5h after oral administration of 
Dasatinib suspension, the plasma exhibited a maximum 
concentration of 452.98±14.26ng/ml. However, in the Dasatinib 
SNEDDS formulation, the highest plasma concentration of Dasatinib 
at 10h was significantly greater (1089.92±42.71 ng/ml). When 
comparing the Dasatinib SNEDDS AUC (0–48h) to the Dasatinib 
suspension group, it was found to be 3.24 times higher. This finding 
showed that the Dasatinib SNEDDS significantly increased the rate of 
drug absorption. First, when the SNEDDS enter the human body, 
they can emulsify spontaneously into a tiny nanoemulsion in the GI 
tract during peristaltic movement. This significantly improves both 
GI and lymphatic drug absorption. Second, by inhibiting P-gp and 
increasing intestinal barrier permeability, the surfactant enhances 
medication absorption [52, 57]. 

 

 

Fig. 5: Dissolution profile of F130 and pure drug in pH 1.2 acid buffer. Results are expressed as mean of triplicates 
 

Table 7: Pharmacokinetic profile of dasatinib and dasatinib SNEDDs 

PK parameters Pure dasatinib Dasatinib SNEDDs 

Cmax (ng/ml) 452.98±14.26 1089.92±42.71 
Tmax (h) 2.5±0.00 10±0.00 
AUMC0-48 (h) 2376.5±5.16 10430±140.72 
AUC0-48 (h) 3698.535±62.1 12008.3±157.8 
MRT (h) 6.428±1.83 11.64±0.84 
Kel (ng/h) 0.202±0.00 0.143±0.0015 
t½ (h) 3.414±1.28 4.838±0.05 

*Each experiment is performed in triplicates; value sareexpressed as mean±SD; AUC=area under the curve; t1/2=elimination half-life; 
Kel=elimination rate constant, MRT=mean residential time 
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Fig. 6: Dissolution profile of F 130 and pure drug in pH 6.8 phosphate buffer. Results are expressed as mean of triplicates 

 

 

Fig. 7: In vivo pharmacokinetic plasma concentration vs. time profile of Dasatinib vs. Dasatinib SNEEDs, results are expressed as mean of 
triplicates 

 

CONCLUSION 

The SNEDDS formulation exhibited a much higher solubility and 
dissolution profile of Dasatinib when the formulation was diluted up 
to 99% and was able to keep the drug solubilized in in vitro 
conditions. There was a 3.24-fold increase in the oral bioavailability 
of the drug when incorporated in the SNEDDS formulation as 
compared to the pure drug. It could be concluded from the results 
that Capmul MCM, Cremophor EL and Acconon MC8 can be further 
explored as potential vehicles so as to achieve higher drug loading, 
improvised dissolution profiles and enhanced bioavailability for the 
BCS Class II drug Dasatinib. 
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