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ABSTRACT 

Objective: This review examines the growing global burden of Diabetic Nephropathy (DN), a major complication of Diabetes Mellitus (DM) and a 
leading cause of Chronic Kidney Disease (CKD) and End-Stage Renal Disease (ESRD). With diabetes rates increasing, DN presents a significant health 
challenge. Current treatments manage established DN, but preventive strategies targeting high-risk individuals are urgently needed. This review 
evaluates current and emerging therapies for DN prevention. 

Methods: A comprehensive literature search was conducted across multiple databases (PubMed, Web of Science, SCOPUS and others) to identify 
studies on the treatment and prevention of DN in DM patients. Eligible studies included Randomized Controlled Trials (RCT), cohort studies and 
meta-analyses published upto 2024, focusing on outcomes like albuminuria, Glomerular Filtration Rate (GFR) and ESRD incidence.  

Results: Current treatments, including Sodium Glucose Co-transporter 2 (SGLT2) inhibitors, Angiotensin-Converting Enzyme (ACE) inhibitors and 
Angiotensin Receptor Blocker (ARB), effectively reduce albuminuria and slow progression. Emerging therapies, such as antioxidants (Alpha-Lipoic Acid 
(ALA), Resveratrol), Mineralocorticoid Receptor Antagonists (MRA) and Endothelin Receptor Antagonists (ERA), show promise in improving kidney 
function and reducing inflammation. Other potential therapies targeting Oxidative Stress (OS), inflammation and fibrosis, such as Advanced Glycation 
End products(AGE) inhibitors and Tumor Necrosis Factor-α (TNF-α) inhibitors, have demonstrated preclinical efficacy but require further validation. 

Conclusion: While current therapies slow DN progression, they do not offer definitive prevention. Emerging treatments targeting oxidative stress, 
inflammation and fibrosis show promise in reducing kidney damage. However, challenges like side effects and long-term safety remain. Further 
research is needed to establish the efficacy of these therapies and develop personalized strategies for preventing DN in high-risk populations. 
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INTRODUCTION 

Diabetes mellitus (DM) is a global metabolic disorder with a rapidly 
increasing incidence, rising from 108 million cases in 1980 to 451 
million in 2017 and projected to affect 693 million people by 2045 
[1, 2]. This alarming trend presents a major healthcare challenge 
worldwide. Among the chronic complications of DM, Diabetic 
Nephropathy (DN) is one of the most serious and feared. Affecting 
approximately 40% of individuals with diabetes, DN significantly 
contributes to the burden of Chronic Kidney Disease (CKD) and End-
Stage Renal Disease (ESRD), making diabetes the leading cause of 
ESRD globally [3]. Cardiovascular complications also present a major 
concern for individuals with DN, with cardiovascular disease being 
the primary competing risk before patients reach stage 4 CKD [4]. 

DN is a long-term, progressive kidney condition that typically 
manifests after 10 to 20 years of diabetes, initially characterized by 
microalbuminuria and progressing to macroalbuminuria and 
eventual renal impairment [5, 6]. Early intervention is crucial, as 
strict control of blood glucose and Blood Pressure (BP) has been 
shown to slow disease progression [7]. However, despite advances 
in treatment, including the use of ACE Inhibitors (ACEI), Angiotensin 
II Receptor Blockers (ARB) and newer therapies like Sodium Glucose 
co-Transporter (SGLT2) inhibitors, the majority of current 
interventions focus on managing the condition after it has already 
developed rather than preventing its onset. 

This presents a critical gap in diabetes care. While existing therapies 
help control blood glucose and mitigate renal and cardiovascular 
complications, there is a pressing need for preventive strategies that 
can specifically target high-risk diabetic individuals before DN 
develops. Identifying and developing preventive therapies is 
essential to reduce the incidence of DN, ESRD and the need for Renal 
Replacement Therapy (RRT). By shifting focus toward early 
prevention, we can significantly improve patient outcomes, reduce 

healthcare costs and alleviate the growing burden of diabetes-
related kidney disease. This review will explore the current 
landscape of drug treatments for DN and examine emerging 
preventive approaches that could transform the management of 
Diabetic Kidney Disease (DKD). 

MATERIALS AND METHODS 

Literature search strategy 

A comprehensive literature search was performed to identify 
relevant studies examining treatment and preventive strategies for 
DN and DKD in individuals with DM. The search was conducted in 
multiple electronic databases, including Springer, Wiley, Web of 
Science, PubMed, Google Scholar, SCOPUS, Embase and Cochrane 
Library, with no restriction on publication date up to 2024. To 
further enhance the breadth of the review, references cited within 
included articles were also manually searched. 

The following keywords and Boolean operators were used in the 
search: "Diabetic Nephropathy" OR "Diabetic Kidney Disease", 
"Diabetes Mellitus" AND "Treatment" OR "Prevention", "SGLT2 
inhibitors" OR "ACE inhibitors" OR "Angiotensin Receptor Blockers", 
"Investigational drugs to prevent Diabetic Kidney disease", 
"Investigational drugs to prevent Nephropathy". The search strategy 
was refined using these terms in combination to ensure inclusion of 
studies relevant to both the treatment and prevention of DN/DKD. 

Inclusion and exclusion criteria 

Articles were considered for inclusion if they met the following 
criteria: Published in peer-reviewed journals, investigated the 
treatment or prevention of DN/DKD in patients with Type 1 
Diabetes Mellitus (T1DM) or Type 2 Diabetes Mellitus (T2DM), 
reported clinical outcomes related to albuminuria, Glomerular 
Filtration Rate (GFR) or the incidence of ESRD, involved Randomized 
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Controlled Trials (RCT), cohort studies or meta-analyses and 
published between 2000 and 2024. 

Studies were excluded if: They focused on non-diabetic kidney 
disease, the population consisted exclusively of patients without 
diabetes, they did not report relevant outcomes for DN/DKD or 
lacked sufficient clinical data, they were not published in peer-
reviewed journals (e. g., conference abstracts) and the full text was 
unavailable or did not provide usable data for analysis. 

Data extraction and evaluation 

Data from the included studies were extracted and evaluated based 
on the quality of the evidence and the relevance of the findings. Key 
variables extracted included study design, patient population, type 
of intervention or preventive measure, outcomes related to renal 
function (e.g., albuminuria progression, GFR) and any reported 
adverse events. 

Risk of bias assessment 

The risk of bias for each included study was assessed using the 
Cochrane Risk of Bias Tool for RCT and the Newcastle-Ottawa Scale for 
observational studies. Bias was evaluated across several domains: 
Selection bias (e.g., random sequence generation, allocation 
concealment), Performance bias (e.g., blinding of participants and 
personnel), Detection bias (e.g., blinding of outcome assessment), 
Reporting bias (e.g., selective reporting of outcomes). 

Studies were categorized as having low, moderate or high risk of 
bias in each domain. Any disagreements regarding bias assessments 
were resolved through discussion among the authors. Sensitivity 
analyses were conducted to assess the robustness of the review 
findings, especially in studies with a high risk of bias. 

RESULTS AND DISCUSSION 

Pathophysiology of DKD 

The mechanisms underlying DKD arise from the interplay of three 
primary processes: hemodynamic, metabolic, and inflammatory 
factors. Each process contributes differently depending on an 
individual's genetic background, which explains variability in 
disease progression. 

Hemodynamic factors 

A crucial element of the hemodynamic aspect of DKD is the Renin-
Angiotensin-Aldosterone System (RAAS). Renin, secreted by 
juxtaglomerular cells near the afferent arterioles, is pivotal for RAAS 
activation. Angiotensin II, produced through this pathway, binds to 
AT1 and AT2 receptors: AT1 receptor activation leads to increased 
resistance in efferent arterioles and elevated intraglomerular 

pressure maintaining renal filtration rates and AT2 receptor 
activation promotes vasodilatory Prostaglandin (PG) release, which 
offers a protective counterbalance [8]. 

Elevated angiotensin II levels contribute to renal injury through non-
hemodynamic mechanisms: Stimulates aldosterone secretion and 
Promotes release of inflammatory chemokines, such as MCP-1 and 
TGF-β [9, 10]. 

Metabolic factors 

Hyperglycemia, Insulin Resistance (IR) and dyslipidemia contribute 
to the progression of DKD. Excess glucose load in the proximal 
tubule upregulates SGLT-1 and SGLT-2, enhancing glucose and 
sodium reabsorption. This leads to decreased sodium delivery to the 
distal nephron and impaired tubuloglomerular feedback, disrupting 
normal glomerular hemodynamics [11-13]. 

Local factors 

Factors like Endothelin-1, Reactive Oxygen Species (ROS) and 
Thromboxane A2 (TXA2) increase the tone of efferent arterioles 
contributing to glomerular hypertension. IR increases the 
production of Cyclooxygenase-2 (COX-2), prostanoids and the 
kallikrein-kinin system, resulting in the dilation of the afferent 
arterioles. 

Activation of the Renin-Angiotensin System (RAS) can damage 
Glomerular Endothelial Cells (GEC), increasing fenestrations and 
triggering apoptosis. Hyperglycemia promotes the formation of 
Advanced Glycation End products (AGE), which attach to their RAGE 
receptors that reduces Nitric Oxide (NO) availability and increase 
activity of Transforming Growth Factor-Beta (TGF-β), a fibrotic 
factor. Diabetes accelerates the aging of Endothelial Progenitor Cells 
(EPC), diminishing their reparative capabilities. 

Podocyte dysfunction 

Podocytes exhibit dysregulated production of Vascular Endothelial 
Growth Factor (VEGF). Damage to podocytes results in foot process 
effacement and podocyte loss, which is a key mechanism in the 
development of albuminuria in diabetic patients [14-17]. 

Inflammation and fibrosis 

Inflammation and fibrosis play crucial roles in the development of 
DKD. Infiltration of renal tissue by macrophage is a significant 
characteristic of DKD. Hyperglycemia and angiotensin II contribute 
to the recruitment of macrophages, which amplify inflammation 
through cytokine release. Activation of Mineralocorticoid Receptors 
(MR) intensifies the inflammatory response and contributes to 
glomerular damage by promoting sodium reabsorption and 
potassium excretion [18-20]. 

 

 

Fig. 1: Pathophysiology of DKD 
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Drugs to prevent DKD 

Preventing DKD involves a multifaceted approach aimed at 
managing the underlying risk factors associated with diabetes. First 
and foremost, maintaining tight blood glucose control through diet, 
exercise and medications is essential to prevent damage to the 
kidneys. Monitoring and managing BP is equally critical, as high BP 
can accelerate kidney damage. Keeping BP within target levels 
(typically<130/80 mm Hg) through lifestyle changes and 
medications like ACE inhibitors or ARB is recommended. Reducing 
excess weight, avoiding smoking and limiting alcohol intake are also 
key lifestyle modifications that improve overall kidney health. 
Additionally, controlling cholesterol levels with statins can help 
reduce the cardiovascular risk that often accompanies diabetes and 
contributes to kidney dysfunction. Regular screening for early signs 
of kidney damage, such as albuminuria (protein in the urine) allows 
for early intervention and monitoring. In some cases, medications 
like SGLT2 inhibitors may be prescribed to further protect the 
kidneys. By addressing these modifiable risk factors along with a 
focus on diet, exercise and regular medical check-ups, individuals 
with diabetes can significantly reduce their risk of developing 
diabetic kidney disease. 

Current treatment options 

Glycemic control 

Glycemic control is fundamental in managing DKD. The American 
Diabetes Association (ADA) recommends an A1C target of<7% for 
most adults with diabetes, while the American College of Physicians 
(ACP) suggests a target range of 7-8% for patients with long-
standing diabetes or limited life expectancy [21, 22]. Studies show 
that aggressive glycemic control (e.g., A1C<6%) can reduce DKD 
incidence, but it may increase the risk of hypoglycemia, especially in 
older adults or those with cardiovascular disease [23]. Therefore, 
treatment should be individualized based on the patient's risk 
profile.  

DPP-4 Inhibitors (e.g., Sitagliptin, Saxagliptin) reduce albuminuria 
independently of glucose control and are generally well tolerated. 
However, they may increase the risk of Heart Failure (HF) and have 
uncertain long-term benefits in preventing ESRD [24-26].  

GLP-1 Receptor Agonists (e.g., Semaglutide, Liraglutide) protect 
renal endothelial cells and reduce Oxidative Stress (OS), improving 

kidney function and albuminuria. However, gastrointestinal side 
effects and risks of pancreatitis may limit their use [27-29].  

SGLT2 Inhibitors (e.g., Empagliflozin, Canagliflozin) are a 
breakthrough in DKD management, significantly reducing renal 
disease progression and the need for RRT, as shown in the EMPA-
REG OUTCOME trial [30, 31]. They can cause urinary and genital 
infections and dehydration and their long-term renal benefits in 
broader populations are still under study. 

Thiazolidinediones (e.g., Pioglitazone) can reduce albuminuria but 
are limited by side effects such as weight gain and edema, with 
unclear benefits in preventing ESRD [32]. 

BP control 

Control of BP is crucial in preventing the progression of DKD. While 
a target BP of<140/90 mm Hg is generally recommended, achieving 
this may not be appropriate for all patients [33, 34]. 

ACE Inhibitors (e.g., Enalapril, Ramipril) are effective in reducing 
albuminuria and mortality in DKD but can cause hyperkalemia, 
hypotension and renal impairment, especially in patients with 
existing kidney dysfunction [35, 36]. 

Aldosterone Antagonists (e.g., Spironolactone) lower proteinuria and 
BP, particularly in patients already on ACE inhibitors or ARB. 
However, they carry risks of hyperkalemia and gynecomastia and 
their benefit in advanced DKD remains unclear [37, 38]. 

ARB (e. g., Losartan, Valsartan) also reduce albuminuria and slow 
DKD progression. Like ACE inhibitors, they can cause hyperkalemia 
and hypotension and their long-term efficacy in advanced CKD is still 
under investigation [39]. 

MRA such as Spironolactone, Eplerenone and nonsteroidal MRAs like 
Finerenone have shown promise in reducing albuminuria and 
improving renal outcomes in DKD. Nonsteroidal MRAs, including 
Finerenone have a lower incidence of hyperkalemia and may offer a 
safer alternative to traditional therapies. Similarly, esaxerenone and 
KBP-5074, other nonsteroidal MRAs have also been found to 
significantly reduce Urine Albumin to Creatinine Ratio (UACR) in 
patients with diabetes and CKD [40-53]. These agents, especially 
when combined with ACE inhibitors or ARB, provide cardiorenal 
protection, though potassium monitoring is essential. 

  

Table 1: Current treatment options to prevent DKD 

Drug 
category 

Drug Mechanism of action Dose Side effects Cost Reference 
number 

Glycemic 
control 

DPP-4 Inhibitors Inhibit DPP-4, increasing incretin 
hormones, improving insulin 
secretion, and reducing albuminuria 

Sitagliptin (100 mg 
daily), Saxagliptin (5 
mg daily) 

Nasopharyngitis, heart 
failure risk, hypoglycemia 
(rare) 

Moderate [24-26] 

GLP-1 Receptor 
Agonists 

Increase insulin secretion, decrease 
glucagon secretion, and reduce renal 
oxidative stress, improving albuminuria 

Semaglutide (0.25 mg 
weekly), Liraglutide 
(0.6 mg daily) 

Nausea, vomiting, 
pancreatitis risk, 
Hypoglycemia 

High [27-29] 

SGLT2 Inhibitors Block sodium-glucose cotransporter 
2 (SGLT2), reducing glucose 
reabsorption in the kidney, 
improving albuminuria, and slowing 
renal disease progression 

Empagliflozin (10 
mg daily), 
Canagliflozin (100 
mg daily) 

UTIs,Mycotic genital 
infections, dehydration, 
DKA (rare) 

High [30, 31] 

Thiazolidinediones Activate PPAR-γ receptors, 
improving insulin sensitivity and 
reducing albuminuria 

Pioglitazone (15-45 
mg daily) 

Weight gain, edema, heart 
failure risk 

Moderate [32] 

BP 
control 
 

ACE Inhibitors Inhibit angiotensin-converting 
enzyme, reducing aldosterone, 
promoting vasodilation, and lowering 
proteinuria 

Enalapril (5-40 mg 
daily), Ramipril (2.5-
10 mg daily) 

Hyperkalemia, 
hypotension, Cough, 
Increase serum creatinine 
level, Teratogenicity 

Low [35, 36] 

Aldosterone 
Antagonists 

Block aldosterone receptors, 
reducing sodium retention, 
proteinuria, and BP 

Spironolactone (25-
100 mg daily) 

Hyperkalemia, 
gynecomastia 

 

Low [37, 38] 

ARB Block angiotensin II receptors, reducing 
vasoconstriction and aldosterone 
release, improving albuminuria 

Losartan (25-100 
mg daily), Valsartan 
(40-160 mg daily) 

Hyperkalemia, 
hypotension, Increase in 
serum creatinine 

Moderate [39] 

MRA Block mineralocorticoid receptors, 
reducing proteinuria, blood pressure, 
and kidney damage 

Spironolactone (25-
100 mg daily), 
Finerenone (10-20 
mg daily) 

Hyperkalemia, 
hyponatremina, 
gynecomastia, hypovolemia 
(Spironolactone) 

High [40-53] 
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Critical analysis 

Despite the availability of various pharmacological agents to control 
glycemia and blood pressure in DKD, several key limitations remain. 
First, while ACE inhibitors, ARB and SGLT2 inhibitors have 
demonstrated efficacy in slowing the progression of renal disease, 
none of these therapies are curative. They predominantly serve as 
disease-modifying agents, with benefits primarily in reducing 
albuminuria and delaying the progression to more severe stages of 
DKD. However, in many patients, particularly those with advanced 
disease these agents provide only limited protection. 

Furthermore, side effects are a significant concern. ACE inhibitors 
and ARBs may cause hyperkalemia and renal dysfunction, while 
SGLT2 inhibitors increase the risk of urinary and genital infections. 
Thiazolidinediones, while effective in some cases, can exacerbate 
heart failure, weight gain and edema, limiting their use in certain 
patient populations. 

As a result, there is an urgent need for individualized treatment 
approaches in managing DKD. Treatment regimens should be 
tailored to the patient’s specific stage of disease, comorbid 
conditions and risk factors. A more personalized approach 
incorporating factors such as age, underlying cardiovascular risk and 
co-morbidities may optimize therapeutic outcomes and minimize 
adverse effects. 

Experimental treatment 

Antioxidants 

Alpha-lipoic acid (ALA) 

A potent antioxidant that neutralizes ROS and reduces OS, ALA 
protects against DKD. It improves renal function, reduces fibrosis 
and decreases inflammatory cytokines (IL-6, TNF-α) by modulating 
pathways like p38 MAPK and NF-κB [54-56]. Clinical trials show ALA 
reduces urinary albumin excretion, a key marker of kidney 
dysfunction in diabetes. Typical dosages range from 600–1,200 
mg/day [57-59]. 

Resveratrol 

This polyphenol regulates oxidative stress, inflammation and autophagy 
in DN. It reduces ROS, enhances antioxidant defenses and improves 
kidney function through the AMPK/SIRT1/Nrf2 and Keap1/Nrf2 
pathways [60, 61]. Studies show it also reduces proteinuria and 
improves renal structure [62, 63]. Combined with other treatments, 
Resveratrol may enhance DN management [64]. Network pharmacology 
highlights therapeutic targets for Resveratrol in DKD [65]. 

Curcumin 

Known for anti-inflammatory, antioxidant and anti-apoptotic effects, 
curcumin protects the kidneys by activating Nrf2 and inhibiting NF-
κB. It reduces OS, inflammation and fibrosis, particularly in DN [66-
70]. Curcumin nanoparticles (nCUR) have shown promise in delaying 
DKD progression, even without controlling hyperglycemia [71]. It 
also modulates inflammation in CKD patients [72-75]. 

Sulbutiamine 

It is a synthetic vitamin B1 derivative. Sulbutiamine reduces OS, 
improves kidney function and suppresses inflammatory markers in 
DN models [76]. 

Schisandrin B (Sch B) 

It isa plant-derived lignan that targets mitochondrial dysfunction 
and Epithelial-Mesenchymal Transition (EMT) in renal tubular cells, 
reducing fibrosis and improving mitochondrial function in DKD. Sch 
B acts through the TGF-β1, PI3K/Akt, and AMPK pathways [77]. 

AGE formation inhibitors 

Diphlorethohydroxycarmalol (DPHC) is found in brown seaweed. 
DPHC inhibits the AGE-RAGE interaction, preventing MGO-induced 
renal damage and regulating apoptosis [78]. Other AGE inhibitors 
like Aminoguanidine show promise, although clinical trials have been 
limited due to side effects [79-81]. 

Aldose reductase inhibitors (ARIs) 

WJ-39andEpalrestatare ARI that inhibit the polyol pathway to 
protect against diabetic kidney damage. WJ-39 improves 
mitochondrial function and reduces fibrosis in preclinical models 
[82]. Epalrestat has beneficial effects on renal function and interacts 
with key pathways (AGE-RAGE, TNF, HIF-1) [83], though 
gastrointestinal side effects limit its clinical use. 

MRA 

Esaxerenone is an MR blocker. Esaxerenone reduces albuminuria in 
DN independent of BP-lowering effects [84]. 

Endothelin-1 receptor A (ETA) antagonists 

Atrasentan and Zibotentan are ETA-selective antagonists that reduce 
glomerular permeability and proteinuria, showing potential for DN 
and CKD. Atrasentan has shown promise in reducing renal events 
and albuminuria [85-91]. However, side effects like fluid retention 
and hepatotoxicity are concerns with long-term use. 

mTOR inhibitors 

mTOR signaling, activated by high glucose and cytokines in diabetes, 
promotes cell proliferation and fibrosis in kidney cells, contributing 
to DKD. mTOR activation impairs autophagy and promotes OS, 
inflammation and podocyte damage. Rapamycin, an mTOR inhibitor, 
shows promise in preclinical models but has side effects, including 
proteinuria and IR [92-105]. Other mTOR-targeting agents, like 
thiazolidinediones (Rosiglitazone), aldosterone antagonists 
(Spironolactone) and plant compounds (e.g., Tripterygium glycoside), 
show protective effects in DKD [106-114]. Vitamin D Receptor (VDR) 
activation, through DDIT4 upregulation, inhibits mTOR, mitigating 
kidney injury and fibrosis. These findings support mTOR inhibition 
as a potential DKD therapy, though further research is needed [115-
121]. 

TNF-α inhibitors 

TNF-α and its receptors, TNFR1 and TNFR2, play a role in the 
progression of DKD. Inhibiting TNF activity in diabetic models 
reduces proteinuria, sodium retention and kidney hypertrophy. 
Soluble TNF receptors like TNFR: Fc and Etanercept show promise in 
mitigating renal damage, suggesting TNFR as a key therapeutic 
target in DKD [122-126]. 

Pentoxifylline (PTX) 

PTX has shown benefits in DKD by reducing proteinuria, improving 
kidney function (creatinine clearance), controlling inflammation and 
OS. PTX also improves lipid profiles, lowering LDL-C and 
Triglycerides (TGL) and reduces TNF-α levels. These multifactorial 
effects underscore its potential in DKD management [127-134]. 
Large-scale studies are needed to confirm PTX's therapeutic 
potential. 

Protein kinase C inhibitors (PKCI) 

PKC β overactivity contributes to DN via collagen production and 
fibrosis. Ruboxistaurin, a selective PKC β inhibitor, reduces 
glomerular hyperfiltration and proteinuria in diabetic rats [135, 
136]. Echinochrome A (EchA), derived from sea urchins, also inhibits 
PKC and improves renal function in diabetic models by reducing OS 
and fibrosis [137]. 

Nox1/4 inhibitors 

NOX1 and NOX4 enzymes generate ROS, promoting inflammation 
and fibrosis in DKD. GKT137831, a dual NOX1/4 inhibitor, shows 
protective effects in preclinical DN models. The NOX-E36 inhibitor 
reduced albuminuria in DN patients, suggesting its potential for 
preventing kidney damage [138-140]. 

Nrf2 activators 

Nrf2 activation enhances antioxidant capacity, reduces inflammation 
and prevents fibrosis, critical in DN. Bardoxolone Methyl, an Nrf2 
activator, improved GFR in diabetic patients, though cardiovascular 
concerns led to trial termination [141, 142]. 
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Table 2: Experimental treatment to prevent DKD 

Drug 
category 

Drug Mechanism of action Study model Study outcome Challenges in 
development 

Reference 
number 

Why it can be used in 
preventing DKD? 

Antioxidants ALA Neutralizes ROS, reduces OS, 
modulates inflammatory and 
fibrotic pathways 

Animal (Preclinical), 
Human (Clinical) 

Preclinical studies showed protective 
effects on kidney function, reduced 
hyperglycemia, prevented 
glomerulosclerosis and fibrosis. 
Clinical trials showed decreased 
albumin excretion. 

Mild side effects (GI 
discomfort, hypoglycemia), 
optimal dosage and long-
term safety need further 
study 

[54-59] OS is a key driver of DKD and 
ALA targets this pathway, 
offering potential for kidney 
protection. 

Resveratrol Modulates 
AMPK/SIRT1/Nrf2 and 
Keap1/Nrf2 pathways, 
reduces ROS, enhances 
antioxidant enzymes, 
improves kidney function. 

Animal (Preclinical), 
Human (Clinical) 

Reduced proteinuria, improved 
kidney structure, decreased 
inflammatory markers. Subgroup 
analyses showed beneficial effects 
with or without co-treatment with 
other medications. 

Long-term efficacy and 
optimal dosage still under 
investigation. 

[60-65] Given the role of 
inflammation and oxidative 
stress in DKD, resveratrol 
could help reduce these 
factors, slowing kidney 
damage. 

Curcumin Reduces OS, prevents renal 
damage, enhances 
mitochondrial function, 
modulates Nrf2 and NF-κB. 

Animal (Preclinical), 
Human (Clinical) 

Reduced renal inflammation and 
fibrosis, improved kidney function in 
diabetic rat models. In human trials, 
reduced inflammation in CKD patients. 

More research needed for 
precise mechanisms and 
clinical application. 

[62-66, 
103-106] 

Curcumin offers antioxidant, 
anti-inflammatory, and 
antifibrotic properties, 
essential for combating DKD 
progression. 

Sulbutiamine Reduces OS, suppresses 
inflammatory markers, 
improves kidney function. 

Animal (Preclinical) Reduced fasting blood glucose, improved 
kidney function (decreased urea, 
creatinine), reduced inflammation, and 
improved histopathological changes in 
kidneys of diabetic rats. 

Limited human data on 
long-term effects. 

[76] Targets OS and inflammation, 
core contributors to DKD, 
with promising effects in 
early studies. 

Sch B Inhibits EMT, improves 
mitochondrial function, 
reduces ROS, enhances ATP 
production. 

Animal (Preclinical) Prevented EMT in renal tubular cells, 
improved mitochondrial function, 
reduced fibrosis and OS. 

Limited human studies and 
clinical validation. 

[77] Inhibiting EMT and improving 
mitochondrial function may 
help prevent fibrosis and 
functional decline in DKD. 

AGE 
formation 
inhibitors 

DPHC Inhibits AGE-RAGE 
interaction, regulates 
apoptosis, enhances Nrf2 
pathway. 

Animal (Preclinical) Prevented AGE-related kidney 
damage, suppressed RAGE protein 
expression, reduced renal damage in 
diabetic rats. 

Limited clinical data, need 
for larger trials. 

[78] AGE accumulation accelerates 
DKD progression; targeting 
AGE-RAGE interactions may 
slow down this process. 

Aminoguanidine Inhibits AGE formation by 
trapping reactive carbonyl 
compounds and preventing 
glycoxidation. 

Animal (Preclinical), 
Human (Clinical) 

Reduced renal AGE accumulation and 
mesangial expansion in diabetic rats, 
but minimal benefits in human trials 
for overt nephropathy 

Discontinued due to 
toxicity and adverse effects 
in humans. 

[79-81] AGEs contribute to fibrosis 
and inflammation in DKD, 
making their inhibition 
crucial for slowing disease 
progression. 

Aldose 
Reductase 
Inhibitors 
(ARIs) 
 

WJ-39 
 

Inhibits aldose reductase, 
reducing polyol pathway 
activation, improves 
mitochondrial function, 
reduces fibrosis. 

Animal (Preclinical) Protected against renal tubular 
damage in diabetic rats, improved 
mitochondrial function and reduced 
fibrosis. 

Long-term safety and 
efficacy in humans remain 
to be confirmed. 

[82] The polyol pathway is linked 
to DKD progression, and 
inhibition could reduce 
kidney damage and fibrosis. 

Epalrestat Inhibits aldose reductase, 
reducing renal metabolic 
disturbances and 
inflammatory pathways. 

Human (Clinical), 
Animal (Preclinical) 

Reduced renal dysfunction and 
metabolic disturbances in DN patients, 
decreased inflammation. 

Gastrointestinal side 
effects and liver enzyme 
abnormalities limit use. 

[83] Inhibition of aldose reductase 
could provide a direct 
therapeutic benefit in 
addressing metabolic 
disturbances in DKD. 

 
MRA 

Esaxerenone Blocks MR, reduces 
albuminuria independent of 
BP reduction. 

Human (Clinical) Reduced Urine Albumin-to-Creatinine 
Ratio (UACR) in patients with DN, 
independent of BP effects. 

Further research needed to 
clarify mechanisms and 
efficacy across different 
populations. 

[84] Blocking MR can reduce 
albuminuria, a key marker of 
kidney damage in DKD. 

ETA Ambrisentan, 
Macitentan, 
Sitaxentan, BQ-123, 

Selective antagonism of ETA 
receptors, reducing 
vasoconstriction, 

Preclinical, Clinical Reduced glomerular permeability, 
lower BP, potential for treating 
resistant hypertension, DN 

Side effects: hepatotoxicity, 
fluid retention, anemia, 
particularly with long-term 

[85-91] ETA can mitigate 
vasoconstriction and 
inflammation, both of which 
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Drug 
category 

Drug Mechanism of action Study model Study outcome Challenges in 
development 

Reference 
number 

Why it can be used in 
preventing DKD? 

Darusentan, 
Avosentan, 
Atrasentan, 
Zibotentan 

inflammation and renal 
damage 

use of Sitaxentan, 
Avosentan 

contribute to DKD 
progression. 

Bosentan, 
Tezosentan, 
Aprocitentan 

Dual antagonism of ETA and 
ETB receptors, vasodilation, 
renal protection 

Preclinical, Clinical Bosentan approved for PAH; 
Tezosentan does not reduce 
cardiovascular events; Aprocitentan 
lowers BP in resistant hypertension 

Liver dysfunction, fluid 
retention, lack of 
cardiovascular event 
reduction in clinical trials 

[163-169] Dual antagonism of endothelin 
receptors can help combat renal 
vasoconstriction and improve 
kidney outcomes in DKD. 

mTOR 
Inhibitor 

Rapamycin, 
Thiazolidinediones 
(e. g., Rosiglitazone), 
Aldosterone 
antagonists (e. g., 
Spironolactone) 

Inhibition of mTOR signaling 
pathway, preventing 
podocyte damage and 
glomerular hypertrophy 

Preclinical, Clinical Reduced kidney injury, improved 
glomerular function, reduced fibrosis 
and inflammation 

Side effects: proteinuria, 
renal tubular necrosis, 
insulin resistance, immune 
suppression 

[92-105] mTOR inhibitors can protect 
glomerular integrity and 
prevent kidney injury, crucial 
for preventing DKD. 

Tripterygium 
Glycoside, Triptolide, 
Radix Astragali, 
Paecilomyces 
Cicadidae, 
Dihydromyricetin, 
Ginsenoside Rg1, 
Kaempferol 

Modulation of mTOR 
signaling, enhancing 
autophagy, reducing 
epithelial-mesenchymal 
transition and apoptosis 

Preclinical, In vitro Protection of renal function, delayed 
DKD progression, improved 
autophagic processes 

Limited clinical data, 
potential safety concerns, 
unclear mechanisms of 
action 

[106-114] Modulating mTOR signaling 
could enhance kidney 
function and delay DKD 
progression by promoting 
autophagy and reducing 
fibrosis. 

TNF-α 
Inhibitors 

Infliximab, 
Etanercept 

Inhibition of TNF signaling, 
reduction of inflammation, 
sodium retention and renal 
hypertrophy 

Preclinical (STZ 
rats), Clinical 
(human) 

Reduced urinary TNF excretion, 
attenuated kidney damage, decreased 
albuminuria 

Limited understanding of 
TNFR1 vs TNFR2 
contributions, variable 
outcomes across models 

[122-126] TNF-α is a major pro-
inflammatory mediator in 
DKD; its inhibition could help 
reduce kidney inflammation 
and damage. 

PTX PTX Anti-inflammatory, reduces 
oxidative stress, improves 
lipid profile and enhances 
kidney function 

Clinical (human), 
Preclinical 

Reduced UACR, improved creatinine 
clearance, reduced inflammation and 
OS 

Need for large-scale, 
longitudinal studies to 
confirm findings, safety 
profile concerns 

[127-134] PTX’s anti-inflammatory and 
antioxidant effects make it a 
potential therapy to reduce 
kidney damage in DKD patients. 

PKCI Ruboxistaurin, EchA Inhibition of PKC β and 
downstream pathways, 
reducing fibrosis and 
oxidative stress 

Preclinical (rat, 
mouse), Clinical 

Reduced glomerular hyperfiltration, 
proteinuria, improved renal function 
in DN models 

Limited human trials, 
efficacy and safety 
concerns, need for long-
term data 

[135-137] PKC activation plays a role in 
DKD progression; inhibiting it 
could help reduce fibrosis and 
renal damage in diabetes. 

Nox1/4 
Inhibitor 

GKT137831, NOX-
E36 

Inhibition of NOX1 and NOX4, 
reducing ROS production and 
kidney damage 

Preclinical (mouse), 
Clinical (human) 

Significant reduction in albuminuria, 
potential efficacy in preventing kidney 
damage 

Lack of long-term clinical 
data, variable response 
across patient populations 

[138-140] NOX enzymes contribute to 
OS in DKD; inhibiting them 
may prevent kidney injury 
and slow disease progression. 

Nrf2 
Activator 

Bardoxolone Methyl Activation of Nrf2 pathway, 
enhancing antioxidant 
capacity and reducing 
inflammation 

Clinical (human) Increased glomerular filtration rate 
(GFR), but trial terminated early due 
to cardiovascular events 

Safety concerns 
(cardiovascular risks), 
need for further trials to 
confirm long-term benefits 

[141, 142] Activating Nrf2 enhances 
kidney antioxidant defenses, 
which is critical in managing 
OS in DKD. 

JAK-STAT 
Inhibitor 

Baricitinib Inhibits JAK1 and JAK2, 
suppresses inflammation and 
reduces albuminuria. 

Phase II clinical trial 
in type 2 diabetic 
patients with DKD. 

Significant reduction in albuminuria 
(40%), reduction in pro-inflammatory 
biomarkers (e. g., CXCL10, CCL2). 
Common AE: anemia. 

Potential safety concerns 
with long-term use (e. g., 
anemia, infection). Further 
large-scale trials needed. 

[143-154] Shows promising results in 
reducing inflammation, 
albuminuria, and fibrosis in 
DKD patients. 

Ruxolitinib It blocks JAK1 and JAK2, 
leading to a decrease in 
inflammation and fibrosis 
while also regulating 
podocyte autophagy. 

Preclinical animal 
models (STZ-
induced Wistar rats, 
HG-induced MPC-5 
cell model). 

Reduced proteinuria, decreased levels 
of inflammatory markers (TNF-α, 
TGF-β1, NF-κB), and fibrosis markers 
(vimentin). 

No clinical trials yet for 
DKD, limited full animal 
studies. 

Potential for reducing kidney 
fibrosis and inflammation in 
DKD, though further research 
needed. 

Nifuroxazide Inhibits JAK2 and Tyk2, 
suppresses STAT3 

Preclinical studies in 
STZ-induced SD rats, 

Reduced oxidative stress, 
inflammation, and renal fibrosis. 

Lack of clinical trials for 
DKD, but long-term safety 

High oral safety promising 
anti-inflammatory and 
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Drug 
category 

Drug Mechanism of action Study model Study outcome Challenges in 
development 

Reference 
number 

Why it can be used in 
preventing DKD? 

phosphorylation, reduces 
oxidative stress and 
inflammation. 

UUO rats. Improved glucose metabolism. in clinical use suggests 
promise. 

antioxidative effects could be 
useful in DKD treatment. 

Sinomenine Inhibits JAK2/STAT3/SOCS1 
pathway, reduces 
inflammation, fibrosis, and 
apoptosis. 

Preclinical studies in 
STZ-induced SD rats. 

Reduced apoptosis of renal cells, along 
with decreased inflammation and 
fibrosis. 
Skin lesions and gastrointestinal 
discomfort noted. 

Potential side effects such 
as skin lesions and 
gastrointestinal issues. 

Potential therapeutic option 
for inflammation and fibrosis 
in DKD through JAK/STAT 
modulation. 

Silymarin It blocks the 
JAK2/STAT3/SOCS1 and TGF-
β/Smad signaling pathways, 
leading to a reduction in 
inflammation, oxidative stress, 
and fibrosis. 

Preclinical studies in 
STZ-induced SD rats. 

Improved podocyte injury, reduced 
oxidative stress, and renal fibrosis. 
Gastrointestinal discomfort reported 
as AE. 

Teratogenicity concerns in 
animal studies, limited 
clinical data. 

May help reduce oxidative 
stress and renal fibrosis in 
DKD patients with favorable 
safety profile in clinical use. 

Total Glucosides of 
Paeony (TGP) 

Inhibits JAK2/STAT3 pathway, 
suppresses macrophage 
activation, reduces renal 
inflammation and fibrosis. 

Preclinical studies in 
Wistar rats with 
STZ-induced DKD. 

Inhibited macrophage infiltration and 
fibrosis, reduced progression of DKD. 

No clinical data yet for 
DKD. 

Potential anti-inflammatory 
and fibrosis-reducing effects 
make it promising for DKD 
management. 

Paeoniflorin Inhibits JAK2/STAT3 
pathway, reduces 
macrophage infiltration and 
inflammatory responses. 

Preclinical studies in 
STZ-induced 
C57BL/6J mice. 

Alleviated kidney inflammation and 
fibrosis, improved kidney protection. 

No significant adverse 
reactions in clinical trials. 

May provide effective anti-
inflammatory and protective 
effects against DKD. 

Isoliquiritigenin Inhibits JAK2/STAT3 pathway, 
reduces inflammation and 
oxidative stress, protects 
against renal fibrosis. 

Preclinical studies in 
HFD/STZ-induced 
SD rats. 

Reduced renal fibrosis and 
inflammation, decreased IL-6 and 
ICAM-1 levels. 

Minimal side effects 
reported. 

Promising in alleviating 
oxidative stress and fibrosis, 
potential for DKD prevention. 

Momordica 
Charantia 

Inhibits 
JAK2/STAT3/STAT5/SOCS3/
4 pathways, reduces renal 
inflammation and fibrosis. 

Preclinical studies in 
STZ-induced Wistar 
rats. 

Reduced renal inflammatory 
response, modulated JAK/STAT 
pathways, reduced kidney damage. 

No major adverse effects, 
but further studies on long-
term use are needed. 

Potential for modulating 
inflammatory pathways, a 
promising candidate for DKD 
prevention. 

Danzhi Jiangtang 
Capsule 

Inhibits JAK/STAT pathway, 
reduces oxidative stress and 
inflammation in DKD. 

Preclinical studies in 
HFD/STZ-induced 
SD rats and AGE-
induced GMC model. 

Reduced renal dysfunction, alleviated 
inflammatory injury in rats, associated 
with JAK/STAT inhibition. 

Limited clinical data, but in 
vitro and animal studies 
suggest efficacy. 

Potential as a complementary 
treatment for DKD by 
targeting oxidative stress and 
inflammation. 

ErHuang Formula Inhibits CXCL6/JAK/STAT3 
pathway, reduces 
inflammation fibrosis, and 
improves kidney function. 

Preclinical studies in 
HFD/STZ-induced SD 
rats and HG-induced 
NRK-49F cells. 

Reduced fibrosis, decreased 
inflammation and renal dysfunction. 

Need for more extensive 
clinical trials. 

Potential to reduce renal 
fibrosis and inflammation, 
useful in DKD management. 

Adhesion and 
chemokine 
molecule 
inhibitors 

ASP8232 (VAP-1 
inhibitor), Emapticap 
Pegol (CCL2-CCR2 
inhibitor), NOX-A12 
(CXCL12 inhibitor) 

Blockade of adhesion 
molecules and chemokines, 
reducing immune cell 
migration and kidney 
inflammation 

Clinical (Phase II), 
Preclinical 

Reduced proteinuria, renal protection, 
slowed progression of kidney injury 

Limited options for 
targeting adhesion 
molecules need for 
additional clinical research 

[155-
161,162] 

Targeting adhesion molecules 
can block immune cell 
migration to the kidneys, 
reducing inflammation and 
fibrosis in DKD. 

 

JAK-STAT inhibitors 

JAK inhibitors, such as tofacitinib (JAK1/3) and baricitinib (JAK1/2), have shown effectiveness in 
treating inflammatory and autoimmune diseases, including rheumatoid arthritis [143]. Ruxolitinib, 
another JAK1/2 inhibitor, is approved for myelofibrosis [144] and has also been studied in 
autoimmune diseases like Crohn’s disease and psoriasis [145, 146]. In early clinical trials, JAK 
inhibitors have demonstrated potential in treating DKD by improving renal function and reducing 
inflammatory markers [147, 148]. Baricitinib, for instance, has reduced albuminuria and inflammation 
in type 2 diabetic patients with DKD (NCT01683409). However, the long-term safety of these 

treatments, especially concerning anemia and infection risks, requires further investigation. 
Additionally, Ruxolitinib and Nifuroxazide, which inhibit the JAK/STAT pathway, have shown promise 
in experimental models for DKD treatment by reducing fibrosis and inflammation [149, 150]. Natural 
products like Sinomenine, Silymarin and Paeoniflorin have also been studied for their ability to 
modulate the JAK/STAT pathway and offer potential therapeutic benefits for DKD [151, 152]. Other 
medications, such as liraglutide and vitamin D, have been found to inhibit the JAK/STAT pathway and 
alleviate DKD-related inflammation and fibrosis, although further clinical trials are needed to confirm 
their long-term efficacy and safety [153, 154]. 



B. Dharani et al. 
Int J App Pharm, Vol 17, Issue 1, 2025, 68-81 

75 

Adhesion and chemokine molecule inhibition in DKD 

Adhesion molecules (ICAM-1, VCAM-1, VAP-1) and chemokines (e. g., 
CCL2) contribute to kidney inflammation and damage in DKD. 
Targeting adhesion molecules with VAP-1 inhibitors like ASP8232 
and blocking the CCL2-CCR2 pathway with Emapticap Pegol reduced 
proteinuria in Phase II trials [155-161]. CXCL12 inhibition also 
alleviated kidney damage in diabetic mice [162]. 

Critical analysis 

The development of experimental drugs for DKD has been notably 
slow despite promising preclinical results and the urgent need for 
effective therapies. One significant reason for this lag is the high 
attrition rate during clinical trials, often due to issues related to 
safety, efficacy and side effects. Many drugs that show potential in 
animal models fail to replicate these outcomes in human trials. For 
example, while antioxidants like ALA and curcumin show positive 
effects in preclinical studies, they often have limited bioavailability 
or cause mild side effects in humans which hampers their clinical 
adoption. Similarly, AGE formation inhibitors like Aminoguanidine, 
despite showing promise in animal models, were discontinued in 

human trials due to toxicity concerns. Additionally, the complexity of 
DKD’s pathophysiology, involving multiple pathways such as OS, 
inflammation, fibrosis and metabolic dysregulation, makes it difficult 
to pinpoint a single therapeutic target. As a result, clinical trials 
frequently fail to achieve the desired outcomes, slowing the 
development of effective treatments. 

Moreover, regulatory and financial hurdles further delay the 
introduction of new DKD therapies. Clinical trials, particularly those 
for chronic conditions like DKD, require long follow-up periods to 
assess long-term safety and effectiveness, which increases both time 
and cost. This is particularly challenging for drugs targeting multiple 
pathways, such as mTOR inhibitors or ETA, where potential side 
effects like fluid retention or cardiovascular risks must be carefully 
managed. Limited funding, especially for phase III trials and a lack of 
consensus on optimal biomarkers for disease progression, also 
contribute to the slow pace of drug development. As a result, while 
the number of experimental drugs in the DKD pipeline is growing, 
many faces significant obstacles before they can be approved for 
widespread clinical use, further delaying advances in treatment for 
this progressive and debilitating disease. 

 

Table 3: Comparison of current drugs Vs experimental drugs to prevent DKD 

Criteria Current treatment options Experimental treatment options 

Therapeutic 
efficacy 

-DPP-4 Inhibitors: Improve insulin 
secretion and reduce albuminuria. 
Proven efficacy in DKD management. 
-SGLT2 Inhibitors: Reduce glucose 
reabsorption and albuminuria, slow 
progression of kidney disease. 
-ACE Inhibitors/ARBs: Reduce 
proteinuria, control BP and protect 
kidney function. 

-Antioxidants (ALA, Resveratrol, Curcumin, Sulbutiamine, Schisandrin B): Show promising 
effects on reducing OS, improving kidney function and preventing fibrosis in preclinical 
and early clinical trials. 
-AGE Formation Inhibitors (DPHC, Aminoguanidine): Show potential in reducing kidney 
damage by preventing AGE-RAGE interaction. 
-ARI: Potential to reduce kidney damage by inhibiting the polyol pathway. 
-MRA (Esaxerenone): Show efficacy in reducing albuminuria independent of BP. 
-Endothelin-1 Receptor Antagonist (Ambrisentan, Macitentan, Bosentan): Potential to 
reduce glomerular permeability and inflammation. 
-mTOR Inhibitors (Rapamycin, Tripterygium Glycoside): Demonstrate efficacy in reducing 
kidney injury, improving glomerular function and decreasing inflammation and fibrosis. 
-TNF-α Inhibitors (Infliximab, Etanercept): Show potential in reducing kidney 
inflammation and albuminuria. 
-PTX: Demonstrates potential in improving kidney function and reducing inflammation. 
-Nox1/4 Inhibitors (GKT137831, NOX-E36): Show potential to reduce ROS production and 
kidney damage. 
-Nrf2 Activators (Bardoxolone Methyl): Demonstrated increased glomerular filtration rate, 
though concerns over cardiovascular safety exist. 
-JAK-STAT Inhibitors (Baricitinib): Reduced proteinuria in early-phase trials, suggesting 
efficacy in DKD management. 
-Adhesion and Chemokine Molecule Inhibitors: Target adhesion molecules to reduce 
inflammation and kidney damage. 

Cost -Moderate to High: SGLT2 inhibitors, 
GLP-1 agonists, and other medications 
like ACE inhibitors or ARBs can be 
expensive, especially newer drugs like 
SGLT2 inhibitors. 

-Varies: Many experimental treatments are still in clinical trials and are not yet 
commercially available, making the cost difficult to determine. Some therapies might be 
cost-effective if they enter the market but others, especially novel biologics or small 
molecules, may be expensive. 

 

CONCLUSION 

In conclusion, while significant progress has been made in 
identifying and implementing strategies to prevent DKD, many of the 
current interventions primarily focus on slowing disease 
progression rather than offering definitive prevention. Lifestyle 
modifications such as weight loss, physical activity and dietary 
changes remain foundational in reducing the risk of DKD and 
pharmacological treatments such as ACE inhibitors, ARB and SGLT2 
inhibitors have demonstrated efficacy in mitigating the onset of 
kidney complications. However, these interventions are not without 
limitations and while they can delay the progression of kidney 
damage, they do not fully prevent the disease in all patients. 

Given the promising yet early-stage nature of many emerging 
therapies such as antioxidants (e. g., ALA, Resveratrol, Curcumin), 
MRA and novel agents like JAK-STAT inhibitors, the urgency for 

more extensive and rigorous clinical trials becomes evident. Early 
clinical data may suggest potential benefits, but they are not 
sufficient to justify the optimistic outlook that some of these 
therapies might prevent DKD in the long term. Therefore, a key 
priority is the acceleration of clinical studies to validate these 
promising treatments, particularly for high-risk populations who 
may benefit most from early intervention.  

Additionally, as DKD is a complex and multifactorial disease, a more 
personalized approach to prevention by incorporating individual 
risk factors such as age, comorbid conditions and underlying 
cardiovascular risk will be essential in optimizing prevention 
strategies. Tailoring interventions to the specific needs of each 
patient has the potential to prevent the onset of DKD while 
minimizing adverse effects. Ultimately, a concerted effort to advance 
clinical trials and refine prevention strategies will be crucial in 
reducing the burden of DKD and improving outcomes for those at 
risk. 
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