Andrew Ebenazer, Jonathan Sampath Franklyne, Amitava Mukherjee, N. Chandrasekaran


Objective: Azithromycin (AZM), an azalide drug is used to treat bacterial infections. It is poorly water soluble, with low human bioavailability due to partial absorption. This can be improved using a microemulsion drug delivery system using essential oil.

Methods: Microemulsion system was prepared with AZM solubilized lemongrass oil (Cymbopogon citratus), Tween 20 and water containing 1% (v/v) 10mM sodium hydroxide. In vitro drug release was determined using a 14KDa semipermeable dialysis membrane. The kinetics of bacterial killing was done at MIC concentrations and viable counts were determined hourly for 24 h. Bacterial cell viability was determined by differential staining with acridine orange and ethidium bromide. In vitro toxicity was determined by the MTT assay, while in vivo toxicity was determined in male Wistar rats.

Results: The optimized formulation (5:20:75 %) was thermodynamically stable with drug solubility of 366.90 mg/ml and a droplet diameter of 12.4±3.9 nm, which do not show in vivo or in vitro toxicity. In vitro drug release study in simulated body fluids revealed a controlled drug release from microemulsion based formulation. The MIC was 1μg/ml and 2μg/ml against Staphylococcus aureus and Escherichia coli respectively. In vitro kill kinetics showed >2 log10 killing by 8 h. Bacterial cell viability assay and scanning electron microscopy analysis further confirmed substantial morphological changes due to alteration in the cell membrane.

Conclusion: The reduced droplet size and the inherent antibacterial property of lemongrass oil enhanced the efficacy of the AZM loaded ME system in comparison with the bulk drug, against the bacterial pathogens.


Drug delivery system, lemongrass oil, microemulsion, drug release, antibacterial activity, toxicity testing


Sareen, S., Mathew, G., Joseph, L. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int J Pharma Investig 2012;2:12-17.

Kumar, A., Sharma, S., Kamble, R. Self-emulsifyingdrug delivery system (SEDDS): future aspects. Int J Pharm Pharm Sci 2010;2:7-13.

T Lalwani, J., Thakkar, V. T., Patel, H. V. Enhancement of solubility and oral bioavailability of ezetimibe by a novel solid self nano emulsifying drug delivery system (SNEDDS). Int J Pharm Pharm Sci 2013;5:513-22.

Pujara, N. D. Self emulsifying drug delivery system: A Novel approach. Int J Curr Pharm Res 2012;4:18-23.

Kreilgaard, M. Influence of microemulsions on cutaneous drug delivery. ‎Adv Drug Deliv Rev 2002;54:S77-98.

Dixit, G. R., Mathur, V. Microemulsions: Platform for improvement of solubility and dissolution of poorly soluble drugs. Asian J Pharm Clin Res 2015;8:7-17.

Onawunmi, G. O. Evaluation of the antimicrobial activity of citral. Lett Appl Microbiol 1989;9:105-08.

Moore‐Neibel, K., Gerber, C., Patel, J., Friedman, M., Ravishankar, S. Antimicrobial activity of lemongrass oil against Salmonella enterica on organic leafy greens. J Appl Microbiol 2012;112:485-92.

Silva, C. d. B. d., Guterres, S. S., Weisheimer, V., Schapoval, E. E. Antifungal activity of the lemongrass oil and citral against Candida spp. Braz J Infect Dis 2008;12:63-66.

Tyagi, R., Sharma, G., Jasuja, N. D., Menghani, E. Indian medicinal plants as an effective antimicrobial agent. J Crit Rev 2016;3:69-71.

Mazzei, T., Mini, E., Novelli, A., Periti, P. Chemistry and mode of action of macrolides. J Antimicrob Chemother 1993;31:1-9.

Champney, W. S., Burdine, R. Azithromycin and clarithromycin inhibition of 50S ribosomal subunit formation in Staphylococcus aureus cells. Curr Microbiol 1998;36:119-23.

Luke, D. R., Foulds, G. Disposition of oral azithromycin in humans. Clin Pharmacol Ther 1997;61:641-48.

Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F. J., Khar, R. K., Ali, M. Design and development of oral oil in water ramipril nanoemulsion formulation: in vitro and in vivo assessment. J Biomed Nanotechnol 2007;3:28-44.

Nirmala, M. J., Mukherjee, A., Chandrasekaran, N. Improved efficacy of fluconazole against candidiasis using bio‐based microemulsion technique. ‎Biotechnol Appl Biochem 2013;60:417-29.

Prajapati, S. T., Joshi, H. A., Patel, C. N. Preparation and Characterization of Self-Microemulsifying Drug Delivery System of Olmesartan Medoxomil for Bioavailability Improvement. J Pharm 2012;2013.

Syed, H. K., Peh, K. K. Identification of phases of various oil, surfactant/co-surfactants and water system by ternary phase diagram. Acta pol pharm 2014;71:301-09.

Nasr, A., Gardouh, A., Ghorab, M. Effect of Oils, Surfactants and Cosurfactants on Phase Behavior and Physicochemical Properties of Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Irbesartan and Olmesartan. Int J Appl Pharm 2016;8:1-9.

Liu, Z., Wang, X., Yao, K., Du, G., Lu, Q., Ding, Z., Tao, J., Ning, Q., Luo, X., Tian, D. Synthesis of magnetite nanoparticles in W/O microemulsion. J Mater Sci 2004;39:2633-36.

Shafiq, S., Shakeel, F., Talegaonkar, S., Ahmad, F. J., Khar, R. K., Ali, M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm 2007;66:227-43.

Nirmala, M. J., Shivashankar, M., Ernest, V., Mukherjee, A., Chandrasekaran, N. Physico-chemical characterization of ramipril using clove oil based microemulsion drug delivery system. Nanomed Nanobiol 2014;1:43-50.

Marques, M. R., Loebenberg, R., Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolut Technol 2011;18:15-28.

Solanki, S. S., Sarkar, B., Dhanwani, R. K. Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. ISRN pharm 2012;DOI:10.5402/2012/108164.

Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., Banat, I. M. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett 2016;38:1015-19.

Barry, A. L., Craig, W. A., Nadler, H., Reller, L. B., Sanders, C. C., Swenson, J. M. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. NCCLS document M26-A 1999;19.

Sarker, S. D., Nahar, L., Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42:321-24.

Nogueira, F., Diez, A., Radfar, A., Pérez-Benavente, S., do Rosario, V. E., Puyet, A., Bautista, J. M. Early transcriptional response to chloroquine of the Plasmodium falciparum antioxidant defence in sensitive and resistant clones. Acta Trop 2010;114:109-15.

Sugumar, S., Ghosh, V., Nirmala, M. J., Mukherjee, A., Chandrasekaran, N. Ultrasonic emulsification of eucalyptus oil nanoemulsion: antibacterial activity against Staphylococcus aureus and wound healing activity in Wistar rats. Ultrason Sonochem 2014;21:1044-9.

Böyum, A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest 1968;21:77-89.

Naravaneni, R., Jamil, K. In vitro cytogenetic studies of cypermethrin on human lymphocytes. Indian J Exp Biol 2006;44:233-39.

Spencer, K. Analytical reviews in clinical biochemistry: the estimation of creatinine. ‎Ann Clin Biochem 1986;23:1-25.

Kumar, G. P., Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 2011;1:208-19.

Patel, V., Kukadiya, H., Mashru, R., Surti, N., Mandal, S. Development of microemulsion for solubility enhancement of clopidogrel. Iran J Pharm Res 2010;9:327-34.

Srinivas, C., Sagar, S. Enhancing the bioavailability of simvastatin using microemulsion drug delivery system. Asian J Pharm Clin Res 2012;5:134-39.

Lawrence, M. J., Rees, G. D. Microemulsion-based media as novel drug delivery systems. Adv Drug Delivery Rev 2012;64:175-93.

Thakkar, H., Nangesh, J., Parmar, M., Patel, D. Formulation and characterization of lipid-based drug delivery system of raloxifene-microemulsion and self-microemulsifying drug delivery system. J Pharm Bioallied Sci 2011;3:442-48.

Li, X., Anton, N., Ta, T. M. C., Zhao, M., Messaddeq, N., Vandamme, T. F. Microencapsulation of nanoemulsions: novel Trojan particles for bioactive lipid molecule delivery. Int J Nanomedicine 2011;6:1313-25.

Hunter, R. J. Zeta potential in colloid science: principles and applications. 1st ed.: Academic press; 2013.

Honary, S., Zahir, F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Trop J Pharm Res 2013;12:265-73.

Woo, B. H., Kostanski, J. W., Gebrekidan, S., Dani, B. A., Thanoo, B., DeLuca, P. P. Preparation, characterization and in vivo evaluation of 120-day poly (D, L-lactide) leuprolide microspheres. J Control Release 2001;75:307-15.

Mandal, S., Mandal, S. S. Research Paper Microemulsion Drug Delivery System: A Platform for Improving Dissolution Rate of Poorly Water Soluble Drug. Int J Pharm Sci Nanotech 2011;3:1214-19.

Norcia, L., Silvia, A., Hayashi, S. Studies on time-kill kinetics of different classes of antibiotics against veterinary pathogenic bacteria including Pasteurella, Actinobacillm and Escherichia coli. J Antibiot 1999;52:52-60.

Baker Jr, J. R., Hamouda, T., Shih, A., Myc, A., (2003) Non-toxic antimicrobial compositions and methods of use, U.S. Patent No. 6,559,189.

Sugumar, S., Mukherjee, A., Chandrasekaran, N. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro. Int J Nanomedicine 2015;10:67.

Tyagi, A. K., Malik, A. Morphostructural damage in food-spoiling bacteria due to the lemon grass oil and its vapour: SEM, TEM, and AFM investigations. Evid Based Complement Alternat Med 2012, 10.1155/2012/692625.

Korenblum, E., Regina de Vasconcelos Goulart, F., de Almeida Rodrigues, I., Abreu, F., Lins, U., Alves, P. B., Blank, A. F., Valoni, E., Sebastian, G. V., Alviano, D. S., Alviano, C. S., Seldin, L. Antimicrobial action and anti-corrosion effect against sulfate reducing bacteria by lemongrass (Cymbopogon citratus) essential oil and its major component, the citral. AMB Express 2013;3:44.

Braun, S., Gaza, N., Werdehausen, R., Hermanns, H., Bauer, I., Durieux, M. E., Hollmann, M. W., Stevens, M. F. Ketamine induces apoptosis via the mitochondrial pathway in human lymphocytes and neuronal cells. Br J Anaesth 2010;105:347-54.

Fatal error: Call to a member function getGalleyLabel() on null in /home/innowar1/public_html/journals/cache/t_compile/%%38^38D^38D7420B%%article.tpl.php on line 182