FORMULATION AND IN VITRO EVALUATION OF AMLODIPINE GASTRORETENTIVE FLOATING TABLETS USING A COMBINATION OF HYDROPHILIC AND HYDROPHOBIC POLYMERS

Authors

  • Anas T. Alhamdany Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
  • Ali Khidher Abbas Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.

DOI:

https://doi.org/10.22159/ijap.2018v10i6.28687

Keywords:

Floating tablet, Gastroretentive, Amlodipine, EC 5 mp a s, HPMC E50, HPMC K100M

Abstract

Objective: The aim of this study was to formulate a developed floating tablet of amlodipine using different concentrations and types of hydrophilic and hydrophobic polymers to be conserved in the stomach for modulating solubility and bioavailability, diminishes drug waste and decline side effects.

Methods: Through this study, eleven innovative formulations of amlodipine floating tablets were prepared [mixture of amlodipine, sodium bicarbonate (NaHCO3), hydroxypropyl methylcellulose (HPMC) E50, HPMC K100M, ethylcellulose (EC) 5 mp. a. s.] by direct compression method. The pre-compressed mixtures were then evaluated for numerous parameters such as angle of repose, bulk density, tapped density, Carr's compressibility index and Hausner's ratio. After compression, tablets were subjected to several tests like; floating behavior of tablets, tablet thickness, hardness test, friability test, weight variation, in vitro dissolution test. In addition, the optimum formulation was evaluated for Fourier transform-infrared (FT-IR) and differential scanning calorimetry (DSC) tests.

Results: From in vitro dissolution tests and kinetic assessments; F8 was selected as an optimum formula, depending on the R2 value of zero order kinetics (0.9915) and (n) value of Korsmeyer-Peppas (0.9635) which indicate purely relaxation zero order kinetic with good delaying in drug release that was reached to 14 h.

Conclusion: It can be concluded that the developed formulation of a certain combination of low viscosity grades of HPMC and EC was considered an efficient floating tablet.

Downloads

Download data is not yet available.

References

Jamode P, Saigal N, Gaikwad S, Deshmane S, Swain K. Review article on bilayer sustained release tablet. World J Pharm Pharm Sci 2016;5:1550-63.

Mandal UK, Chatterjee B, Senjoti FG. Gastro-retentive drug delivery systems and there in vivo success: a recent update. Asian J Pharm Sci 2016;11:575-84.

Gupta P, Gnanarajan G, Kothiyal P. Floating drug delivery system: a review. Int J Pharm Res Rev 2015;4:37-44.

Saritha D, Sathish D, Rao YM. Formulation and evaluation of gastroretentive floating tablets of domperidone maleate. J Appl Pharm Sci 2012;2:68-73.

kumari SDC, Vengatesh S, Elango K, Damayanthi RD, Deattu N, Christina P. Formulation and evaluation of floating tablets of ondansetron hydrochloride. Int J Drug Dev Res 2012;4:265-74.

Uddin M, Rathi PB, Siddiqui AR, Sonawane AR, Gadade DD. Recent development in floating delivery systems for gastric retention of drugs: an overview. Asian J Bio-Pharm Sci 2011;1:26-42.

Nikam MS, Kale RH, Deshmane SV, Biyanik R. Preparation and evaluation of gastroretentive floating tablet containing enalapril maleate. Int J Curr Pharm Res 2014;6:45-7.

Ahmed A, Goyal NK, Sharma PK. Effervescent floating drug delivery system: a review. Global J Pharmacol 2014;8:478-85.

Narang N. An updated review on floating drug delivery system (FDDS). Int J Appl Pharm 2011;3:1-7.

Shilpa C, Manish B, Ajinath S. Formulation and evaluation of bilayer floating tablet of carvedilol phosphate. J Drug Delivery Ther 2012;2:9-19.

Gahandule M, Gadhave MV. A new venture in drug delivery: bilayer floating tablet of loop diuretics with potassium supplement: a review. Int J Pharm Pharm Res 2016;8:175-91.

Sheraz MA, Ahsan SF, Khan MF, Ahmed S, Ahmad I. Formulations of amlodipine: a review. J Pharm 2016:1-11. http://dx.doi.org/10.1155/2016/8961621

Vivek D, Vandana A. Formulation and evaluation of effervescent floating tablet of amlodipine besylate with natural polymer chitosan. J Pharm Sci Innov 2012;1:13-8.

Vennam S, Bhukya B. Formulation and evaluation of gastroretentive drug delivery system of amlodipine besylate floating tablets. J Drug Delivery Res 2014;3:11-21.

Pawar HA, Dhavale R. Development and evaluation of gastroretentive floating tablets of an antidepressant drug by thermoplastic granulation technique. Beni-Suef University J Basic Appl Sci 2014;3:122-32.

Rahim SA, Carter PA, Elkordy AA. Design and evaluation of effervescent floating tablets based on hydroxyethyl cellulose and sodium alginate using pentoxifylline as a model drug. Drug Des Dev Ther 2015;9:1843–57.

Anepu S, Duppala L, Sundari S. Formulation development, characterization, and in vitro evaluation of floating matrix dosage form of tramadol hydrochloride using various polymers. Asian J Pharm Clin Res 2017;10:281-90.

Damodharan N, Manimaran V, Sravanthi B. Formulation development and evaluation of delayed release doxycycline. Int J Pharm Pharm Sci 2010;2:116-9.

Shahi SR, Shinde SB, Zadbuke NS, Padalkar AN. Formulation development and evaluation of floating matrix tablet of verapamil HCl. Asian J Pharm 2013;7:27-35.

Prajapati ST, Patel LD, Patel DM. Studies on formulation and in vitro evaluation of floating matrix tablets of domperidone. Indian J Pharm Sci 2009;71:19–23.

Sungthongjeen S, Sriamornsak P, Puttipipatkhachorn S. Design of floating HPMC matrix tablets: effect of formulation variables on floating properties and drug release. Adv Mat Res 2011;311-313:1140-3.

Golla U, Nalla BK, Talla R, Gajam PK, Voore SK. Formulation and in vitro evaluation of gastroretentive drug delivery system of ciprofloxacin hydrochloride. Der Pharm Sinica 2011;2:33-9.

Pawar HA, Gharat PR, Dhavale RV, Joshi PR, Rakshit PP. Development and evaluation of gastroretentive floating tablets of an antihypertensive drug using hydrogenated cottonseed oil. ISRN Pharm 2013:1-9. Doi:10.1155/2013/137238

Chowdhury MEH, Pathan MSI. Preparation and evaluation of floating matrix tablets of ranitidine hydrochloride. Pharma Innovation 2012;1:43-50.

Arza RAK, Gonugunta CSR, Veeraredd PR. Formulation and evaluation of swellable and floating gastroretentive ciprofloxacin hydrochloride tablets. AAPS PharmSciTech 2009;10:220-6.

Kadivar A, Kamalidehghan B, Javar HA, Davoudi ET, Zaharuddin ND, Sabeti B, et al. Formulation and in vitro, in vivo evaluation of effervescent floating sustained-release imatinib mesylate tablet. PLOS One 2015;10:1-23.

Hascicek C, Yuksel Tilkan G, Turkmen B, Ozdemir N. Effect of formulation parameters on the drug release and floating properties of gastric floating two-layer tablets with acetylsalicylic acid. Acta Pharm 2011;61:303–12.

Pati N, Gupta V, Velivela S, Mayasa V. Comparative study of effect various types of polymers on the extended release of tapentadol HCl. Int J Pharm Tech 2016;8:12762-75.

Jagdale S, Agavekar A, Pandya S, Kuchekar B, Chabukswar A. Formulation and evaluation of gastroretentive drug delivery system of propranolol hydrochloride. AAPS PharmSciTech 2009;10:1071-9.

Kesarla RS, Vora PA, Sridhar BK, Patel G, Omri A. Formulation and evaluation of floating tablet of the H2-receptor antagonist. Drug Devel Ind Pharm 2014;41:1-13.

El-Bagory I, Barakat N, Ibrahim MA, El-Enazi F. Formulation and in vitro evaluation of theophylline matrix tablets prepared by direct compression: effect of polymer blends. Saudi Pharm J 2012;20:229-38.

Cifuentes C, Aguilar-De-Leyva A, Rajabi-Siahboomir A, Caraballo I. Critical points in ethylcellulose matrices: Influence of the polymer, drug and filler properties. Acta Pharm 2013;63:115–29.

Ashok KP, Damodar KS. Effect of hydrophilic and hydrophobic polymers and fillers on controlled release matrix tablets of acyclovir. Der Pharm Sinica 2013;4:143-50.

Biswas M, Gupta RN, Parhi R, Sethi KK, Sahoo SK. Formulation and in vitro evaluation of gastroretentive floating drug delivery system of ritonavir. Turkish J Pharm Sci 2013;10:69-86.

Toma NM, Khalil YI. Formulation and evaluation of bilayer tablets containing immediate release aspirin layer and floating clopidogrel layer. Iraqi J Pharm Sci 2013;22:40-9.

Gharti KP, Thapa P, Budhathoki U, Bhargava A. Formulation and in vitro evaluation of hydroxypropyl methylcellulose and polyethylene oxide using ranitidine HCl as a model drug. J Young Pharm 2012;4:201-8.

Vanitha K, Varma M, Ramesh A. Floating tablets of hydralazine hydrochloride: optimization and evaluation. Braz J Pharm Sci 2013;49:811-9.

Meka L, Kesavan B, Chinnala KM, Vobalaboina V, Yamsani MR. Preparation of a matrix type multiple-unit gastro-retentive floating drug delivery system for captopril based on gas formation technique: in vitro evaluation. AAPS PharmSciTech 2008;9:612-9.

Patel DM, Patel NM, Pandya NN, Jogani PD. Formulation and optimization of carbamazepine floating tablets. Indian J Pharm Sci 2007;69:763-7.

Sucharitha M, Devi AN, Priya VP, Shyamala, Sharma JVC. Formulation and evaluation of gastroretentive floating tablets of valsartan. World J Pharm Pharm Sci 2013;3:689-702.

Ammar HO, Makram TS, Mosallam S. Effect of polymers on the physicochemical properties and biological performance of fenoprofen calcium dihydrate-triacetyl-cyclodextrin complex. Pharmaceutics 2017;9:1-19.

Katikaneni PR, Upadrashta SM, Neau SH, Mitra AK. Ethylcellulose matrix controlled-release tablets of a water-soluble drug. Int J Pharm 1995;123:119-25.

El Nabarawi MA, Teaima MH, Abd El-Monem RA, Nabarawy NA, Gaber DA. Formulation, release characteristics, and bioavailability study of gastroretentive floating matrix tablet and floating raft system of mebeverine HCl. Drug Des Devel Ther 2017;11:1081–93.

Efentakis M, Peponaki C. Formulation study and evaluation of matrix and three-layer tablet sustained drug delivery systems based on carbopols with isosorbite mononitrate. AAPS PharmSciTech 2008;9:917-23.

Yadav G, Bansal M, Thakur N, Khare S, Khare P. Multilayer tablets and their drug release kinetic models for the oral controlled drug delivery system. Middle-East J Sci Res 2013;16:782-95.

Janakidevi S. Formulation, evaluation and optimization of amlodipine besylate melt in mouth tablets prepared by direct compression method using natural and synthetic super disintegrating agents. Int J Pharm Bio Sci 2014;5:244–57.

Manimaran V, Damodharan N. Development of fast-dissolving tablets of amlodipine besylate by solid dispersion technology using poloxamer 407 and poloxamer 188. Asian J Pharm Clin Res 2017;10:135-41.

Vora C, Patadia R, Mittal K, Mashru R. Preparation and characterization of dipyridamole solid dispersions for stabilization of supersaturation: effect of precipitation inhibitors type and molecular weight. Pharm Dev Technol 2015;21:847-55.

Govindasamy G, Krishnamoorthy K, Rajappan M. Selection of excipients for nanoparticles formulations of nateglinide through drug-excipients compatibility study. Int J Pharm Pharm Sci 2013;5:371-7.

Desai J, Alexander K, Riga A. Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int J Pharm 2006;308:115–23.

Choudhari PK, Jain HK, Sharma P, Srivastava B. A novel co-processed directly compressible release-retarding polymer: in vitro, solid state and in vivo evaluation. Future J Pharm Sci 2018;4:29-40.

Published

07-11-2018

How to Cite

Alhamdany, A. T., & Abbas, A. K. (2018). FORMULATION AND IN VITRO EVALUATION OF AMLODIPINE GASTRORETENTIVE FLOATING TABLETS USING A COMBINATION OF HYDROPHILIC AND HYDROPHOBIC POLYMERS. International Journal of Applied Pharmaceutics, 10(6), 119–125. https://doi.org/10.22159/ijap.2018v10i6.28687

Issue

Section

Original Article(s)