Development of novel Microstructured lipid carriers for dissolution rate enhancement of Albendazole.

  • German Madrigal Universidad de Costa Rica https://orcid.org/0000-0002-9856-4044
  • Jose Alexis Castro Universidad de Costa Rica
  • Jorge Andres Pacheco Universidad de Costa Rica
  • Ronny Vargas Universidad de Costa Rica

Abstract

Some active pharmaceutical ingredients (API) have a limited dissolution rate, an example is the Albendazole, an antihelmintic benzimidazole classified as class II by the Biopharmaceutical Classification System (BCS). This study aimed to develop a microstructured lipid carrier that achieves the improvement of the dissolution rate of the API. The developed carriers were characterized by optical microscopy, infrared spectroscopy, differential scanning calorimetry, X-ray diffractometry and dissolution. Using the obtained data, it was demonstrated that is possible to develop a modified lipid carrier that improves the dissolution rate of the API, which was related to the amorphization of the API`s crystalline structure.

Keywords: Albendazole, Microstructured lipid carrier, dissolution, crystalline structure.

References

1. Attama A, Igbonekwu C. In vitro properties of surface-modified solid lipid microspheres containing an antimalarial drug: Halofantrine. Asian Pac J Trop Med. Hainan Medical College; 2011;4(4):253–8.
2. Bhoyar PK, Morani DO, Biyani DM, Umekar MJ, Mahure JG, Amgaonkar YM. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics. J young Pharm. Elsevier Masson SAS; 2011;3(2):105–11.
3. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharm Sin B. 2013;3(6):361–72.
4. Jannin V, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Deliv Rev. 2008;60(6):734–46.
5. Mayet L, Jung-Cook H, Mendoza O, Rodríguez J. Estudio comparativo de perfiles de disolución de medicamentos del mercado nacional. Rev Mex Cienc Farm. 2008;39(4):4–8.
6. Hu F-Q, Jiang S-P, Du Y-Z, Yuan H, Ye Y-Q, Zeng S. Preparation and characteristics of monostearin nanostructured lipid carriers. Int J Pharm. 2006;314(1):83–9.
7. United States Pharmacopeial Convention. USP 40/ NF35. 2017. p. 2847-2848
8. Albertini B, Passerini N, González-Rodríguez ML, Perissutti B, Rodriguez L. Effect of Aerosil® on the properties of lipid controlled release microparticles. J Control Release. 2004;100(2):233–46.
9. Rowe R, Sheskey P, Quinn M. Handbook of pharmaceutical excipients. 6a ed. Rowe R, Sheskey P, Quinn M, editores. Londres: Pharmaceutical Press and American Pharmacists Association; 2009.
10. Susarla R, Afolabi A, Patel D, Bilgili E, Davé RN. Novel use of superdisintegrants as viscosity enhancing agents in biocompatible polymer films containing griseofulvin nanoparticles. Powder Technol. 2015;285:25–33.
11. Padhye SG, Nagarsenker MS. Simvastatin Solid Lipid Nanoparticles for Oral Delivery: Formulation Development and In vivo Evaluation. Indian J Pharm Sci. 2013;75(5):591–8.
12. Albertini B, Passerini N, González-Rodríguez ML, Perissutti B, Rodriguez L. Effect of Aerosil® on the properties of lipid controlled release microparticles. J Control Release. 2004;100(2):233–46.
13. Alanazi FK, El-Badry M, Ahmed MO, Alsarra IA. Improvement of albendazole dissolution by preparing microparticles using spray-drying technique. Sci Pharm. 2007;75(2):63–79.
14. Gonzalez N, Castro S, Sanchez B, Allemandi D, Palma S. Albendazole solid dispersions: Influence of dissolution medium composition on In Vitro drug release. Dissolution technologies. 2014; 42-47
15. Yurkanis P. Espectrometría de masas, espectroscopia infrarroja y espectroscopia ultravioleta/visible. En: Cruz L, editor. Química Orgánica. 5a ed. México: Pearson Educación; 2008. p. 512–55.
16. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to Spectroscopy. 4ta edició. Estados Unidos de América: Cengage Learning; 2008. p. 27-87.
17. Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surfaces B Biointerfaces. 2005;45(3-4):167–73.
18. Herrmann S, Winter G, Mohl S, Siepmann F, Siepmann J. Mechanisms controlling protein release from lipidic implants: Effects of PEG addition. J Control Release. 2007;118(2):161–8.
19. Mani N, Suh HR, Jun HW. Microencapsulation of a Hydrophilic Drug into a Hydrophobic Matrix Using a Salting?Out Procedure. II. Effects of Adsorbents on Microsphere Properties. Drug Dev Ind Pharm. 2004;30(1):83–93.
20. Castro-Ruiz JM. Diseño de un sistema bioadhesivo de clorhexidina empleando pullulan como matriz para uso en mucosa oral. [Tesis] Colombia: Universidad Nacional de Colombia; 2014.
21. Hernández-Torres JE, Melgoza-Contreras LM. Principales superdisgregantes sintéticos, mecanismos y factores que influyen en su actividad. Rev Colomb Ciencias Químico-Farmacéuticas. 2014;43(2):234–47.
22. Mohanachandran PS, Sindhumol PG, Kiran TS. Superdisintegrants: An overview. Int J Pharm Sci Rev Res. 2011;6(1):105–9.
23. Shihora H, Panda S. Superdisintegrants , Utility in Dosage Forms?: A Quick Review. J Pharm Sci Biosci Res. 2011;1(3):148–53.
24. Yu LX, Furness MS, Raw A, Woodland Outlaw KP, Nashed NE, Ramos E, et al. Scientific considerations of pharmaceutical solid polymorphism in abbreviated new drug applications. Pharm Res. 2003;20(4):531–6.
Statistics
25 Views | Downloads
How to Cite
Madrigal, G., Castro, J. A., Pacheco, J. A., & Vargas, R. (2020). Development of novel Microstructured lipid carriers for dissolution rate enhancement of Albendazole. International Journal of Applied Pharmaceutics, 12(6). Retrieved from https://innovareacademics.in/journals/index.php/ijap/article/view/34782
Section
Original Article(s)