• DEEPANMOL SINGH University of Petroleum and Energy Studies, UPES, Bidholi, 248007, Dehradun, India
  • SHILPA PAHWA Lloyd Institute of Management and Technology (Pharm.), 201306, Greater Noida, India




Bioequivalence, Doxorubicin, Liposome, Critical, Attributes


The development of a generic liposomal doxorubicin product requires the study of critical physicochemical properties of the formulation. Food and Drug Administration (FDA) draft guideline has suggested few parameters to be tested for in vitro bioequivalence study which include liposomal composition, state of encapsulated drug, internal environment, liposomal morphology and number of lamellae, lipid bilayer phase transition, liposomal size distribution, grafted Polyethylene Glycol (PEG) at liposomal surface, electric surface potential or charge and in vitro leakage under multiple conditions. Characteristic features of components of liposomal doxorubicin formulation and detail of parameters to be studied have been discussed. This review compile specific, current and historical research outcomes on in vitro analysis of liposomal doxorubicin and highlights the important features that have a critical impact on properties of liposomal doxorubicin formulation. It will provide a better insight to the generic manufacturers and will help them to identify the critical quality attributes during the formulation development phase.


Hortobagyi GN. Anthracyclines in the treatment of cancer: an overview. Drugs 1997;54:1-7.

Niu G, Cogburn B, Hughes J. Preparation and characterization of doxorubicin liposomes. Methods Mol Biol 2010;624:211-9.

Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an uptake on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013;65:157-70.

Noveen K, Arvind G, Sumit S, Prashanth P. Formulation and evaluation of non-pegylated doxorubicin liposomal drug delivery system. Int J Pharm Pharm Sci 2013;5:541-7.

http://www.horiba.com/fileadmin/uploads/Scientific/Documents/PSA/AN174_app.pdf [Last accessed on 12 Jun 2019]

Maryam EN, Bizhan M, Mohamadreza A, Mahdi H, Manouchehr T, Hamid RS, et al. Liposomal formulation of galbanic acid improved therapeutic efficacy of pegylated liposomal doxorubicin in mouse colon carcinoma. Sci Rep 2019;9:9527.

Suchismita M, Subrata S, Gouri SR. Formulation and evaluation of graphene grafted chitosan/polyaniline nanocomposites for controlled release of anticancer drug doxorubicin. Int J Appl Pharm 2019:11:138-43.

Srikanth, Anand KY, Mallikarjuna SC. Design and optimization of doxorubicin HCl proniosomes by design of experiment. Int J Pharm Pharm Sci 2019;11:90-5.

Waterhouse DN, Tardi PG, Mayer LD, Bally MB. A comparison of liposomal formulations of doxorubicin with drug administered in free form: changing toxicity profiles. Drug Saf 2001;24:903–20.

Bouma J, Beijnen JH, Bult A, Underberg WJ. Anthracycline antitumour agents: a review of physicochemical, analytical and stability properties. Pharm Weekbl Sci Ed 1998;8:109-33.

Naozumi O, Hiromasa T, Yousuke I, Tahara K, Hirofumi T. Characterization of a doxorubicin liposome formulation by a novel in vitro release test methodology using column-switching high-performance liquid chromatography. Chem Pharm Bull 2014;62:538-44.

Mordente A, Meucci E, Silvestrini A, Martorana GE, Giardina B. New development in anthracycline induced cardiotoxicity. Curr Med Chem 2009;16:1656-72.

https://www.accessdata.fda.gov/drugsatfda_docs/psg/Doxorubicin% 20Hydro chloride _draft_Injection%20injec% 20lipo_RLD%2050718_RC09-18pdf [Last accessed on 28 May 19].

Sakai Kato K, Nanjo K, Kawanishi T, Okuda H, Goda Y. Effects of lipid composition on the properties of doxorubicin-loaded liposomes. Ther Delivery 2015;6:785–94.

https://www.liposomes.ca/publications/268%20Abraham%20et%20al%202005pdf [Last accessed on 12 Jun 2019].

Cersosimo E, Williams P, Geer R, Lairmore T, Ghishan F, Abumrad NN. Importance of ammonium ions in regulating hepatic glutamine synthesis during fasting. Am J Physiol 1989;257:514-9.

Summar ML, Koelker S, Freedenberg D, Le Mons C, Haberle J, Lee HS, et al. The incidence of urea cycle disorders. Mol Genet Metab 2013;110:179-80.

Ayyub OB, Behrens AM, Heligman BT, Natoli ME, Ayoub JJ, Cunningham G, et al. Simple and inexpensive quantification of ammonia in whole blood. Mol Genet Metab 2015;115:95-100.

Bosoi CR, Rose CF. Identifying the direct effects of ammonia on the brain. Metab Brain Dis 2009;24:95-102.

Shibata H, Izutsu K, Yomota C, Okuda H, Goda Y. Investigation of factors affecting in vitro doxorubicin release from PEGylated liposomal doxorubicin for the development of in vitro release testing conditions. Drug Dev Ind Pharm 2015;41:1376-86.

Luo D, Carter KA, Razi A, Geng J, Shao S, Giraldo D, et al. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2016;75:193–202.

Lasic DD, Frederik PM, Stuart MCA, Barenholz Y, McCintosh TJ. Gelation of liposome interior. A novel method for drug encapsulation. FEBS Lett 1992;312:255-8.

Xingong L, Hirsh DJ, Cabral Lilly D, Zirkel A, Gruner SM, Janoff AS, et al. Doxorubicin physical state in solution and inside liposomes loaded via a pH gradient. Biochim Biophys Acta 1998;1415:23-40.

Cagdas M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. Appl Nanotechnol Drug Delivery 2014;1-50. Doi:10.5772/58459

Bahareh S, Mohamed IN, Shaharuddin M, Rosnani H, Afendi D, Hamid AJ. Development and characterization of liposomal doxorubicin hydrochloride with palm oil. BioMed Res Int 2014. http://dx.doi.org/10.1155/2014/765426

AD Bangham. Membrane models with phospholipids. Prog Biophys Mol Biol 1968;18:29-95.

Szoka F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA; 1978. p. 4194.

Chemin C, Pean JM, Bourgaux C, Pabst G, Wuthrich P, Couvreur P, et al. Supramolecular organization of S12363-liposomes prepared with two different remote loading processes. Biochim Biophys Acta Biomembr 2009;1788:926–35.

Shao XR, Wei XQ, Zhang S, Fu N, Lin YF, Cai XX, et al. Effects of micro-environmental ph of liposome on chemical stability of loaded drug. Nanoscale Res Lett 2017;12:504.

Roces CB, Kastner E, Stone P, Lowry D, Perrie Y. Rapid quantification and validation of lipid concentrations within liposomes. Pharmaceutics 2016;8:29.

Frohlich M, Brecht V, Peschka Suss R. Parameters influencing the determination of liposome lamellarity by 31P-NMR. Chem Phys Lipids 2001;109:103-12.

Citizen petition FDA-2009-P-0216 Ortho-Biotech Products, L. P; 2009. Available from: www.regulations.gov/search/ Regs/home.html #documentDetail?R=09000064809878d9 [Last accessed on 12 Jun 2019].

Jiang W, Lionberger R, Yu L. In vitro and in vivo characterizations of PEGylated liposomal doxorubicin. Bioanalysis 2011;3:333–44.

Hui Y, Hao L, Jun Z. Preparation of prolonged-circulating galangin-loaded liposomes and evaluation of antitumor efficacy in vitro and pharmacokinetics in vivo. J Nanomater 2019. https://doi.org/10.1155/2019/7236895

Mozafari MR, Pardakhty A, Azarmi S, Jazayeri JA, Nokhodchi A, Omri A. Role of nanocarrier systems in cancer nanotherapy. J Liposome Res 2009;19:310–21.

Aw-Yong PY, Gan PH, Sasmita AO, Mak ST, Ling APK. Nanoparticles as carriers of phytochemicals: recent applications against lung cancer. Int J Res Biomed Biotechnol 2018;7:1–11.

Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H. Macromolecular therapeutics. Clin Pharmacokinet 2003;42:1089–105.

Thi Lan Nguyen, Thi Hiep Nguyen, Dai Hai Nguyen. Development and in vitro evaluation of liposomes using soy lecithin to encapsulate paclitaxel. Int J Biomater 2017. https://doi.org/10.1155/2017/8234712

Gabizon AA, Barenholz Y, Bialer M. Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 1993;10:703–8.

Proffitt RT, Williams LE, Presant CA, Tin GW, Uliana JA, Gamble RC, et al. Tumor-imaging potential of liposomes loaded with In-111-NTA: biodistribution in mice. J Nucl Med 1983;24:45–51.

Demetzos C. Differential scanning calorimetry (DSC): a tool to study the thermal behavior of lipid bilayers and liposomal stability. J Liposome Res 2008;18:159–73.

Lorena R, Marina IG, Fausto S. Influence of cholesterol on the phase transition of lipid bilayers: a temperature-controlled force spectroscopy study. Langmuir 2012;28:12851-60.

https://www.ema.europa.eu/en/documents/comments/overview-comments-receivedpegylatedliposomaldoxorubicin-hydrochloride-concentrate-solution-2-mg/ml-product-specific-bioequivalenceguidance-ema/chmp/800775/2017_en.pdf [Last accessed on 12 Jun 2019]

Jianwei J, Shaojuan L, Chunlei W, Hongyan Zhang. Overcoming multidrug resistance by on-demand intracellular release of doxorubicin and verapamil. J Nanomaterials 2018. https://doi.org/10.1155/2018/3568190

Zeng L, Wu X. Modeling the sustained release of lipophilic drugs from liposomes. Appl Phys Lett 2010;97. https://doi.org/10.1063/1.3479924

Alwarawrah M, Dai J, Huang J. A molecular view of the cholesterol condensing effect in DOPC lipid bilayers. J Phys Chem B 2010;114:7516-23.

Labouta HI, Gomez Garcia MJ, Sarsons CD, Nguyen T, Kennard J, Ngo W, et al. Surface-grafted polyethylene glycol conformation impacts the transport of PEG-functionalized liposomes through a tumour extracellular matrix model. RSC Adv 2018;8:7697-708.

Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Trop J Pharm Res 2013;12:255-64.

Smith MC, Crist RM, Clogston JD, Mc Neil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem 2017;409:5779–87.

Byrne JD, Betancourt T, Brannon Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Delivery Rev 2008;60:1615-26.

Csaba N, Garcia Fuentes M, Alonso MJ. Nanoparticles for nasal vaccination. Adv Drug Delivery Rev 2009;61:140–57.



How to Cite

SINGH, . D., & PAHWA, S. (2020). A REVIEW ON PHYSICO-CHEMICAL PARAMETERS OF LIPOSOMAL DOXORUBICIN. International Journal of Applied Pharmaceutics, 12(2), 1-5. https://doi.org/10.22159/ijap.2020v12i2.35330



Review Article(s)