FORMULATION AND EVALUATION OF AMPHOTERICIN B/ MILTEFOSINE COMBINATION LOADED NANOVESICLES

  • Mulugeta Bezabeh Andhra University

Abstract

ABSTRACT


Objective: The objective of the present investigation was to formulate and evaluate combination of amphotericin B and miltefosine loaded nanovesicles  to be used in the treatment of visceral leishmaniasis.
Method: Amphotericin B (AmB) and miltefosine (MTF) combination loaded nanovesicles were prepared by ethanol injection method. Formulations of nanovesicles were evaluated at varying conditions of stirring rate,  composition of  lipids, drug loading and ethanol/ aqueous ratio on response variables of drug entrapment efficiency (DEE) and particle size.
Results: The study revealed that especially DEE was significantly affected (p < 0.01) by the effects of composition of lipids,  drug loading ,  ethanol /water ratio,  and stirring rate. Particle size of the nanovesicles was significantly affected (p < 0.05) by drug loading and stirring rate. An optimal formulation of AmB/MTF nanovesicles was prepared at selected values of formulation variables-  phosphatidylcholine (PC) /Cholesterol/Stearic acid 20/4/1, drug/ lipid 1:8, AmB/MTF 1:1;  and ethanol /water 1:4 ratios,  and stirring rate 1000 rpm. This  nano vesicular formulation  of AmB/MTF 1:1 combination showed particle size of 145.6 nm, poly dispersity index (PDI) 0.19, zeta potential -27.3 mV and DEE 87 %.
Conclusion: Evaluation of the AmB/MTF 1:1 nanovesicles showed a successful  formulation with very good compatibility, extended drug release, convenient particle size  and high drug entrapment efficiency. To conclude, AmB/MTF nanovesicular formulations could be a safe and reliable therapeutic option over conventional AmB/MTF combination therapy.
 
Keywords: Key words: Nanovesicles; AmB/MTF; Ethanol injection method; Leishmaniasis.

References

REFERENCES
1. Zaioncz S, Khalil NM, Mainardes RM. Exploring the Role of Nanoparticles in Amphotericin B Delivery. Curr Pharm Des 2017; 23 (3): 509-521.
2. Wagner V, Minguez-Menendez A, Pena J, Fernández-Prada1 C. Innovative Solutions for the Control of Leishmaniases: Nanoscale Drug Delivery. Curr Pharm Des 2019;25:1582-1592.
3. Shaw CD, Carter KC. Drug delivery: lessons to be learnt from Leishmania studies.
Nanomedicine 2014; 9(10):1531-44.
4. WHO, World Health Organization, Geneva. (Internet communication at web site
https://www.who.int/gho/neglected_diseases/leishmaniasis/en).
5. Musa A, Khalil E, Hailu A, et al. Sodium Stibogluconate (SSG) & Paromomycin Combination Compared to SSG for Visceral Leishmaniasis in East Africa randomized controlled trial. PLoS Negl Trop Dis 2012; 6(6): 1674.
6. Frézard F, Demicheli C, Da Silva SM, Azevedo EG, Ribeiro RR. Nanostructures for Improved Antimonial Therapy of Leishmaniasis. Nano- and Microscale Drug Delivery Systems 2017:421.
7. Lankalapalli S, Tenneti VS, Nimmali SK. Design and development of vancomycin
liposomes. I J Pharm Edu Res 2015; 49 (3): 208-15.
8. Tanga J, Srinivasanb S, Yuana W, Minga R, et al. Development of a flow-through USP 4
apparatus drug release assay for the evaluation of amphotericin B liposome. Eur J Pharm Biopharm 2019; 134:107–116.
9. AL-Quadeib BT, Radwan MA, Siller L, Horrocks B, Wrightd MC. Stealth Amphotericin B nanoparticles for oral drug delivery: In vitro optimization. Saudi Pharm J 2015; 23(3): 290–302.
10. Momeni A, Rasoolian M, Momeni A, Navaei A et al. Development of liposomes loaded with antileishmanial drugs for the treatment of cutaneous Leishmaniasis. J Liposome Res, 2013; 23(2): 134–144.
11. Batzri, S., Korn, E.D., 1973. Single bilayer liposomes prepared without sonication. BBA – Biomembranes 298, 1015–1019
12. Shete H, Patravale V. Long chain lipid based tamoxifen NLC. Part I: Preformulation studies,formulation development and physicochemical characterization. Int J Pharm 2013, 454: 573– 583.
13. Ong S, Ming L, Lee K, Yuen K.Influence of the Encapsulation Efficiency and Size of Liposome on the Oral Bioavailability of Griseofulvin-Loaded Liposomes. Pharmaceutics 2016; 8(3): 25.
14. Yang K, Delaney JT, Schubert US, Fahr A. Fast high-throughput screening of temoporfin-loaded liposomal formulations prepared by ethanol injection method. J Lip Res 2012; 22(1): 31–41.
15. El-Say KM, Ahmed OA, Mohamed AI, Safo MK, Omar AM. El-Say KM, et al. Zein alpha lipoic acid-loaded nanoparticles to enhance the oral bioavailability of dapoxetine : optimization and clinical pharmacokinetic evaluation. Int J Nanomedicine 2019;14:7461-7473.
16. Shariare MH, Blagden N., De Matas M, Leusen, F. The impact of formulation attributes and process parameters on black seed oil loaded liposomes and their performance in animal models of analgesia. Saudi Pharmaceutical Journal 2012; 25: 404 -412.
17. Venkata NJ, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, et al. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation 2010; 27(3): 187–197.
18. Kaur R, Sharma N, Tikoo K, Sinha VR. Development of mirtazapine loaded solid lipid nanoparticles for topical delivery: Optimization, characterization and cytotoxicity evaluation. Int J pharm 2020; 586
19. Hsieh YF, Chen TL, Wang YT, Chang JH, Chang HM. Properties of Liposomes Prepared with Various Lipids J Food Sci 2002; 67 (8) : 2808-2813.
20. Italia JL, Sharp A, Carter KC, Warn P, Kumar R. Peroral Amphotericin B Polymer Nanoparticles Lead to Comparable or Superior In Vivo Antifungal Activity to That of Intravenous Ambisome® or Fungizone™. Plosone 2011; 6 (10):1-11.
21. Cengiz A, Kahyaoglu T, Schröenb C, Berton-Carabin C. Oxidative stability of emulsions forti?ed with iron: the role of liposomal phospholipids. J Sci Food Agric 2019; 99: 2957–2965.
22. Danaei M, Dehghankhold M, Hasanzadeh AF, Javanmard DR, Mozafari MR. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018;10(2):52.
23. Alonso L,Jéferson E, Cardoso S et al. Interactions of miltefosine with erythrocyte membrane proteins compared to those of ionic surfactants. Coll Surf Biointerfaces 2019; 180:23-30.
24. Efentakis M, Al-Hmoud H, Buckton G, Rajan Z The influence of surfactants on drug release from a hydrophobic matrix. Int J Pha, 1991; 70 (1-2): 153-158.
25. Alvarez-Berrios M, Aponte-Reyes L, Diaz-Figueroa L, Vivero-Escoto J, Johnston A, and Sanchez-Rodriguez D. Preparation and In Vitro Evaluation of Alginate Microparticles Containing Amphotericin B for the Treatment of Candida Infections. Int. J Bio., 2020 https://doi.org/10.1155/2020/2514387.
26. D’Souza S. A Review of In Vitro Drug Release Test Methods for Nano-Sized Dosage Forms. Advances in Pharmaceutics 2014:1-12.
27. Dorlo T, Eggelte T, Vriesa P and Beijnen J. Characterization and identification of suspected counterfeit miltefosine Capsules. Analyst 2012; 137: 1265–1274.
Statistics
7 Views | Downloads
Citations
How to Cite
Bezabeh, M. (2021). FORMULATION AND EVALUATION OF AMPHOTERICIN B/ MILTEFOSINE COMBINATION LOADED NANOVESICLES. International Journal of Applied Pharmaceutics, 13(3). https://doi.org/10.22159/ijap.2021v13i3.40605
Section
Original Article(s)