FUNDAMENTAL ASPECTS OF A THIRD COMPONENT USED IN TERNARY SOLID DISPERSION: A REVIEW

Authors

  • SREE VARSHINI S. Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, Tamilnadu, India
  • VAIYANA RAJESH C. Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, Tamilnadu, India

DOI:

https://doi.org/10.22159/ijap.2021v13i3.40890

Keywords:

Ternary solid dispersion, Ternary agent, Surfactant, pH modulator, Adsorbent, Polymer

Abstract

Ternary solid dispersion (TSD) is one of the promising approaches used in recent studies to address the issues encountered by poorly water-soluble drugs. The binary solid dispersion (BSD) with the drug and the single polymer is not sufficient to satisfy all the criteria such as improved solubility, dissolution, stability, supersaturation, and recrystallization inhibition. Hence, the TSD with the third component/ternary agent aids in overcoming the limitations, thereby enhancing the solubility and bioavailability to a greater extent when compared to the BSD. Excipients that can be used as a third component includes surfactants, pH modulator, polymer and adsorbents. All these excipients have distinct benefits in improving the efficiency of the final dosage form. However, care must be taken in selecting suitable excipients for the research. This review highlights the impact of these excipients in improving the formulation complications and the therapeutic potential of the TSD.

References

Thorat YS, Gonjari ID, Hosmani AH. Solubility enhancement techniques: a review on conventional and novel approaches. Int J Pharm Sci Res 2011;2:2501-13.

Bermudez JM, Cid AG, Simonazzi A, Palma SD. Solid dispersion technology as a strategy to improve the bioavailability of poorly soluble drugs. Ther Delivery 2019;10:363-82.

Goke K, Lorenz T, Repanas A, Schneider F, Steiner D, Baumann K, et al. Novel strategies for the formulation and processing of poorly water-soluble drugs. Eur J Pharm Biopharm 2017;126:40-56.

Bhusnure OG, Yogita M, Gholve SS, Sidram GP, Thonte SS. Formulation and evaluation of poorly aqueous soluble drug by solid dispersion method. J Pharm Res 2016;10:33-40.

Krishnamoorthy V, Nagalingam A, Prasad VPR, Parameshwaran S, George N, Kaliyan P. Characterization of olanzapine-solid dispersions. Iran J Pharm Res 2011;10:13-23.

Jagtap S, Magdum C, Jadge D, Jagtap R. Solubility enhancement technique: a review. J Pharm Sci Res 2018;10:2205-11.

Macheras P, Dokoumetzidis A. A century of dissolution research: from Noyes and Whitney to the Biopharmaceutics classification system. Int J Pharm 2006;321:1-11.

Gowda DV, Sehgal N, Gupta NV, Sivadasu P. Fabrication and evaluation of solid dispersion containing glibenclamide. Asian J Pharm Clin Res 2018;11:158-61.

Alhammid SNABD, Abduljabbar HH. Enhancement of the solubility and the dissolution rate of tamoxifen citrate solid dispersion using soluplus by solvent evaporation technique, Asian J Pharm Clin Res 2019;12:216-21.

Wu G, Huang BB, Liu DX, Liu DK. Application of solid dispersion technique to improve solubility and sustain release of emamectin benzoate. Molecules 2019;24:4315.

Pawar P, Patil M, Waydande S. Design and evaluation of topical solid dispersion composite of voriconazole for the treatment of ocular keratitis. Ther Delivery 2019;10:481-92.

Salami M, Mohammadian M, Momen S, Alavi F, Djomeh ZE, Movahedi AAM. Enhancing the aqueous solubility of curcumin at acidic conditions through the complexation with whey protein nanofibrils. Food Hydrocolloids 2019;87:902-14.

Sosnik A, Kuplennik N. Enhanced nanoencapsulation of sepiapterin within PEG-PCL nanoparticles by complexation with triacetyl-beta-cyclodextrin. Molecules 2019;24:2715.

Williams HD, Porter CJH, Speybroeck MV, Augustijns P. Lipid-based formulations solidified via adsorption onto the mesoporous carrier neusilin R-US2: effect of drug type and formulation composition on in vitro pharmaceutical performance. J Pharm Sci 2014;103:1734-46.

Kazi M, Amri KAA, Alanazi FK. The role of lipid-based drug delivery systems for enhancing solubility of highly selective antiviral agent acyclovir. Pharm Dev Technol 2015;22:312-21.

Herpin MJ, Smyth HDC. Super-heated aqueous particle engineering (SHAPE): a novel method for the micronization of poorly water-soluble drugs. J Pharm Invest 2017;48:135-42.

Seo B, Kim T, Park HJ, Lee JM, Lee YW, Kim JY. Extension of the hansen solubility parameter concept to the micronization of Cyclotrimethylenetrinitramine crystals by the supercritical anti-solvent process. J Supercrit Fluids 2016;111:112-20.

Kankala RK, Chen BQ, Liu CG, Tang HX, Wang SB, Chen AZ. Solution-enhanced dispersion by supercritical fluids: an eco-friendly nanonization approach for processing biomaterials and pharmaceutical compounds. Int J Nanomed 2018;13:4227-45.

Aditya NP, Hamilton IE, Noon J, Norton IT. Microwave-assisted nanonization of poorly water-soluble curcumin. ACS Sustainable Chem Eng 2019;7:9771−81.

Sosnik A, Arzi RS. Electrohydrodynamic atomization and spray-drying for the production of pure drug nanocrystals and co-crystals. Adv Drug Delivery Rev 2018;131:79-100.

Fudholi A, Puspitasar IKA, Sopyan I, Muchtaridi M. A simple effort to enhance solubility and dissolution rate of simvastatin using co-crystallization. Int J Pharm Pharm Sci 2016;8:342-46.

Ellenberger DJ, Miller DA, Kucera SU, Williams III RO. Improved vemurafenib dissolution and pharmacokinetics as an amorphous solid dispersion produced by kinetisol processing. AAPS PharmSciTech 2018;19:1957–70.

Sekiguchi K, Obi N. Studies on the absorption of eutectic mixture. I. A comparison of the behavior of eutectic mixture of sulfathiazole and that of ordinary sulfathiazole in man. Chem Pharm Bull 1961;9:866-72.

Ghareeb MM, Abdulrasool AA, Hussein AA, Noordin MI. Kneading technique for preparation of solid binary dispersion of meloxicam with poloxamer 188. AAPS PharmSciTech 2009;10:1206-15.

Licciardi M, Mohac LMD, Abraham BR, Caruana R, Gaetano G. Multicomponent solid dispersion a new generation of solid dispersion produced by spray-drying. J Drug Delivery Sci Technol 2020;57:101750.

Abraham BTR, Mohac LMD, Keating AV, Pina MDF. Review: engineering of nanofibrous amorphous and crystalline solid dispersions for oral drug delivery. Pharmaceutics 2018;11:1-10.

Yan HM, Jia XB, Zhang ZH, Jiang YR, Ding DM. An attempt to stabilize tanshinone IIA solid dispersion by the use of ternary systems with nano‑CaCO3 and poloxamer 188. Pharmacogn Mag 2014;10:S311-7.

Davis M. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J Controlled Release 2017;269:110-27.

Atef E, Prasad D, Chauhan H. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects. J Pharm Sci 2014;103:3511-23.

Mooter GVD, Singh A. Spray drying formulation of amorphous solid dispersions. Adv Drug Delivery Rev 2015;100:27-50.

Pan B, Sun W. Effect of micro-environment modification and polymer type on the in vitro dissolution behavior and in vivo performance of amorphous solid dispersions. Eur J Pharm Sci 2017;104:240-54.

Fule RA, Meer TS, Sav AR, Amin PD. Artemether soluplus hot-melt extrudate solid dispersion systems for solubility and dissolution rate enhancement with amorphous State characteristics. J Pharm 2013;1514:32.

Hanada M, Jermain SV, Williams III RO. Enhanced dissolution of a porous carrier containing ternary amorphous solid dispersion system prepared by a hot-melt method. J Pharm Sci 2018:107:362-71.

Lang B, Liu S, Mcginity JW, William III RO. Effect of hydrophilic additives on the dissolution and pharmacokinetic properties of itraconazole-enteric polymer hot-melt extruded amorphous solid dispersions. Drug Dev Ind Pharm 2016;42:429-45.

Tran TTD, Ngo HV, Nguyen PK, Vo TV, Duan W, Tran VT, et al. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion. Int J Pharm 2016;513:148-52.

Sahoo AC, Dinda SC, Kanungo SK, Panda J, Patro CN. Formulation development of solid dispersions of nateglinide using melt-able hydrophilic carrier. Pharm Lett 2017;9:134-47.

Bourgeois S, Loys ZS, Valour JP, Briancon S, Fessi H. Orodispersible films based on amorphous solid dispersions of tetrabenazine. Int J Pharm 2017;518:242-52.

Setyawan D, Dewi MY, Isadiartuti D. Ternary solid dispersion to improve solubility and dissolution of meloxicam. J Basic Clin Physiol Pharmacol 2019;30:1-8.

Szafraniec J, Antosik A, Kurek M, Jachowicz R, Gawlak K, Odrobinska J, et al. The self-assembly phenomenon of poloxamers and its effect on the dissolution of a poorly soluble drug from solid dispersions obtained by solvent methods. Pharmaceutics 2019;11:1-22.

Moes JJ, Nuijen B, Koolen SLW, Huitema ADR, Schellens JHM, Beijnen JH. Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (Modradoc001). Int J Pharm 2011;420:244-50.

Kang MJ, Jung HJ, Ahn HI, Park JY, Ho MJ, Lee DR, et al. Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulfate. Int J Biol Macromol 2016;83:282-7.

Medarevic DP, Kleinebudde P, Djuris J, Djuric Z, Ibric S. Combined application of mixture experimental design and artificial neural networks in the solid dispersion development. Drug Dev Ind Pharm 2016;42:382-402.

Zhang Y, Luo R, Chen Y, Ke X, Hu D, Han M. Application of carrier and plasticizer to improve the dissolution and bioavailability of poorly water-soluble baicalein by hot melt extrusion. AAPS PharmsciTech 2014;15:560-8.

Taylor LS, Giraldo M, Laura I, Trasi NS. Impact of surfactants on the crystal growth of amorphous celecoxib. Int J Pharm 2014;461:251-7.

Brandl M, Frank KJ, Westedt U, Rosenblatt KM, Holig P, Rosenberg J, et al. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility. Int J Nanomed 2012;7:5757-68.

Puchkov M, Huwyler J, Detampel P, Bauer SP, Schittny A. Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions. J Controlled Release 2020;320:214-25.

Serajuddin ATM, Shah AV, Gumaste SG, Tahsin MD, Lam K, Solanki NG. Effects of surfactants on Itraconazole-HPMCAS solid dispersion prepared by hot-melt extrusion I: miscibility and drug release. J Pharm Sci 2019;108:1453-65.

Dave RH, Patel AD, Donahue E, Patel HH. To evaluate the effect of addition of an anionic surfactant on solid dispersion using model drug indomethacin. Drug Dev Ind Pharm 2011;38:930-9.

Hirsch M. Surface active agents (surfactants). Prospector; 2015. Available from: https://knowledge.ulprospector.com/3106/pc-surface-active-agents-surfactants [Last accessed on 20 Dec 2020]

Dave N, Joshi T. A concise review on surfactants and its significance. Int J Appl Chem 2017;13:663-72.

Su W, Tang J, Bao J, Shi X, Sheng X. Preparation, optimization, and in vitro-in vivo evaluation of febuxostat ternary solid dispersion. J Microencapsulation 2018;35:454-66.

Chaudhari SP, Dugar RP. Application of surfactants in solid dispersion technology for improving solubility of poorly water soluble drugs. J Drug Delivery Sci Technol 2017;41:68-77.

Patel DM, Patel SP, Patel CN. Formulation and evaluation of fast dissolving tablet containing domperidone ternary solid dispersion. Int J Pharm Invest 2014;4:174-82.

Velaga S, Alhayali A, Tavellin S. Dissolution and precipitation behavior of ternary solid dispersions of ezetimibe in biorelevant media. Drug Dev Ind Pharm 2017;43:79-88.

Ali AA, Zaki RM, Menshawi SFE, Bary AA. Effect of binary and ternary solid dispersions prepared by fusion method on the dissolution of poorly water-soluble diacerein. Int J Drug Delivery 2013;5:99-109.

Alaziz DMA, Nesseem DI, Sammour OA, AllahElshamy AEA. Enhancement of solubility and dissolution rate of poorly water-soluble domperidone by the formulation of multicomponent solid dispersions using solvent evaporation method. Int J Pharm Sci Rev Res 2013;20:10-9.

Han HK, Bajracharya r, Lee SH, Song JG, Kim M, Lee K. Development of a ternary solid dispersion formulation of LW6 to improve the in vivo activity as a BCRP inhibitor: preparation and in vitro/in vivo characterization. Pharmaceutics 2019;11:206.

Sriamornsak P, Chamsai B, Limmatvapirat S, Sungthongjeen S. Enhancement of solubility and oral bioavailability of manidipine by the formation of ternary solid dispersion with D-α-tocopherol polyethylene glycol 1000 succinate and copovidone. Drug Dev Ind Pharm 2017;43:2064-75.

Kim DD, Lee JY, Kang WS, Piao J, Yoon IS, Cho HJ. Soluplus®/TPGS-based solid dispersions prepared by hot-melt extrusion equipped with twin-screw systems for enhancing oral bioavailability of valsartan. Drug Des Dev Ther 2015;9:2745-56.

Mao S, Guan J, Jin L, Liu Q, Xu H, Wu H, et al. Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. Eur J Pharm Sci 2019;139:105043.

Xiong S, Chen J, Chen Y, Huang W, Wang H, Du Y. Bottom up and top down approaches to explore sodium dodecyl sulfate and soluplus on the crystallization inhibition and dissolution of felodipine extrudates. J Pharm Sci 2018;107:2366-76.

Stulzer HK, Franca MT, Pereira RN, Riekes MK, Pinto JMO. Investigation of novel supersaturating drug delivery systems of chlorthalidone: the use of the polymer-surfactant complex as an effective carrier in solid dispersions. Eur J Pharm Sci 2018;111:142-52.

Lee BJ, Tran PHL, Dinh TT, Lee KH, Kim DJ. Dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs with poor water solubility. Expert Opin Drug Delivery 2010;7:647-61.

Onoue S, Taniguchi C, Kawabata Y, Wada K, Yamada S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin Drug Delivery 2014;11:505-16.

Yong CS, Kim JO, Marasini N, Tran TH, Poudel BK, Cho HJ, et al. Fabrication and evaluation of pH-modulated solid dispersion for telmisartan by spray-drying technique. Int J Pharm 2013;441:424-32.

Lee BJ, Ha NS, Tran TTD, Tran PHL, Park JB. Dissolution-enhancing mechanism of alkalizers in poloxamer-based solid dispersions and physical mixtures containing poorly water-soluble valsartan. Chem Pharm Bull 2011;59:844-50.

Park JS, Jeong HM, Choi JS, Kwon SH, Lee SE, Byeon JC, et al. Use of acidifier and solubilizer in tadalafil solid dispersion to enhance the in vitro dissolution and oral bioavailability in rats. Int J Pharm 2017;526:77-87.

Jain S, Nagori BP, Yadav SK. Improvement of the dissolution behavior of the poorly water-soluble drug diacerein by solid dispersion technology and its formulation into tablet dosage form. Madridge J Nov Drug Res 2018;2:79-89.

Pan W, Li S, Wang X, Wang Y, Zhao Q, Zhang L, et al. A novel osmotic pump-based controlled delivery system consisting of pH-modulated solid dispersion for poorly soluble drug flurbiprofen: in vitro and in vivo evaluation. Drug Dev Ind Pharm 2015;41:2089-99.

Park JS, Choi JS, Byeon JC. Naftopidil-fumaric acid interaction in a solid dispersion system: Improving the dissolution rate and oral absorption of naftopidil in rats. Mater Sci Eng C 2019;95:264-74.

Yang J, Dong L, Mai Y, Liu Q, Zhang W. Mechanism and improved dissolution of glycyrrhetinic acid solid dispersion by alkalizers. Pharmaceutics 2020;12:82.

Onoue S, Halder S, Tabata A, Seto Y, Seto H. Amorphous solid dispersions of carvedilol along with pH-modifiers improved pharmacokinetic properties under hypochlorhydoria. Biopharm Drug Dispos 2018;39:232-42.

Han HK, Lee SH, Lee YS, Song JG. Improved in vivo effect of chrysin as an absorption enhancer via the preparation of ternary solid dispersion with Brij L4 and aminoclay. Curr Drug Delivery 2019;6:86-92.

Choi YW, Chae JS, Chae BR, Shin DJ, Goo YT, Lee ES, et al. Tablet formulation of a polymeric solid dispersion containing amorphous alkalinized telmisartan. AAPS PharmSciTech 2018;19:2990-9.

Wairkar S, Gaud R, Jadhav N. Enhanced dissolution and bioavailability of nateglinide by microenvironmental pH‐regulated ternary solid dispersion: in‐vitro and in‐vivo evaluation. J Pharm Pharmacol 2017;69:1099-109.

Pan B, Sun W. Effect of micro-environment modification and polymer type on the in vitro dissolution behavior and in vivo performance of amorphous solid dispersions. Eur J Pharm Sci 2017;104:240-54.

Park JB, Park YJ, Kang CY, Lee BJ. Modulation of microenvironmental pH and utilization of alkalizers in crystalline solid dispersion for enhanced solubility and stability of clarithromycin. Arch Pharm Res 2015;38:839-48.

Su W, Zhong L, Zhu X, Yu B. Influence of alkalizers on dissolution properties of telmisartan in solid dispersions prepared by cogrinding. Drug Dev Ind Pharm 2014;40:1660–9.

Gao C, Yang M, He S, Fan Y, Wang Y, Ge Z, et al. Microenvironmental pH-modified solid dispersions to enhance the dissolution and bioavailability of poorly water-soluble weakly basic GT0918, a developing anti-prostate cancer drug: preparation, characterization and evaluation in vivo. Int J Pharm 2014;475:97-109.

Repka MA, Kim DW, Sarabu S, Shankar V, Bandari S, Murthy N, et al. Formulation of aripiprazole-loaded pH-modulated solid dispersions via hot-melt extrusion technology: in vitro and in vivo studies. Int J Pharm 2019;554:302-11.

Khang G, Shim JB, Lee JK, Jo H, Hwang JH, Jeong SM, et al. Effect of acidifier on the dissolution property of a solid dispersion of raloxifene HCl. Macromol Res 2013;21:42-8.

Onoue S, Kojo Y, Matsunaga S, Suzuki H, Taniguchi C, Kawabata Y, et al. Improved dissolution of dipyridamole with the combination of pH-modifier and solid dispersion technology. Chem Pharm Bull 2017;65:426-31.

Reilly NJO, Baghel S, Cathcart H. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 2016;105:2527-44.

Mooter GVD. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discovery Today Technol 2012;9:79-85.

Otsuka M, Nishimoto Y, Hattori Y. Characterization of ternary amorphous solid dispersion containing hypromellose phthalate and erythritol prepared by hot-melt extrusion using melting point depression. J Drug Delivery Sci Technol 2020;58:101797.

Andrews GP, Abudiak OA, Jones DS. An investigation into the dissolution properties of celecoxib melt extrudates: understanding the role of polymer type and concentration in stabilizing supersaturated drug concentrations. Mol Pharmaceutics 2011;8:1362–71.

Taylor LS, Xie T. Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci 2016;106:100-10.

Atef E, Chauhan H, Kuldipkumar A, Barder T, Medek A, Gu CH. Correlation of inhibitory effects of polymers on indomethacin precipitation in solution and amorphous solid crystallization based on molecular interaction. Pharm Res 2014;31:500–15.

Wagner KG, Monschke M. Impact of HPMCAS on the dissolution performance of polyvinyl alcohol celecoxib amorphous solid dispersions. Pharmaceutics 2020;12:541.

Albadarin AB, Potter CB, Davis MT, Iqbal J, Korde S, Pagire S, et al. Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and soluplus processed by hot-melt extrusion. Int J Pharm 2017;532:603-11.

Shi X, Xu T, Huang W, Fan B, Sheng X. Stability and bioavailability enhancement of telmisartan ternary solid dispersions: the synergistic effect of polymers and drug-polymer(s) interactions. AAPS PharmSciTech 2019;20:143.

Ziaee A, Albadarin AB, Padrela L, Faucher A, Reilly EO, Walker G. Spray drying ternary amorphous solid dispersions of ibuprofen–an investigation into critical formulation and processing parameters. Eur J Pharm Biopharm 2017;120:43-51.

Bilgili E, Radgman K, Ahmad S, Tarabokija J, Coelho A, Rahman M. Synergistic and antagonistic effects of various amphiphilic polymer combinations in enhancing griseofulvin release from ternary amorphous solid dispersions. Eur J Pharm Sci 2020;150:105354.

Baghel S, Cathcart H, Reilly NJO. Investigation into the solid-state properties and dissolution profile of spray-dried ternary amorphous solid dispersions: a rational step toward the design and development of a multicomponent amorphous system. Mol Pharm 2018;15:3796-812.

Mooter GVD, Meeus J, Lenaerts M, Scurr DJ, Amssoms K, Davies MC, et al. The influence of spray‐drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release. J Pharm Sci 2015;104:1451-60.

Maitani Y, Sakurai A, Sakai T, Sako K. Polymer combination increased both physical stability and oral absorption of solid dispersions containing a low glass transition temperature drug: physicochemical characterization and in vivo study. Chem Pharm Bull 2012;60:459-64.

Khang G, Lee JH, Kim MJ, Yoon H, Shim CR, Ko HA, et al. Enhanced dissolution rate of celecoxib using PVP and/or HPMC-based solid dispersions prepared by spray-drying method. J Pharm Invest 2013;43:205-13.

Moribe K, Ohyagi N, Ueda K, Higashi K, Yamamoto K, Kawakami K. Synergetic role of hypromellose and methacrylic acid copolymer in the dissolution improvement of amorphous solid dispersions. J Pharm Sci 2017;106:1042-50.

Badry ME. Physicochemical characterization and dissolution properties of meloxicam-gelucire 50/13 binary systems. Sci Pharm 2011;79:375-86.

Chella N, Tadikonda R. Melt dispersion granules: formulation and evaluation to improve oral delivery of poorly soluble drugs–a case study with valsartan. Drug Dev Ind Pharm 2014;41:888-97.

Panda TK, Das D, Panigrahi L. Formulation development of solid dispersions of bosentan using gelucire 50/13 and poloxamer 188. J Appl Pharm Sci 2016;6:27-33.

Shinde VR, Pore YV, Rao JV. Physical stabilization of amorphous itraconazole in solid dispersions for improved dissolution profile. J Appl Pharm Sci 2016;6:37-44.

Censi R, Gigliobianco MR, Dubbini A, Malaj L, Martino PD. New nanometric solid dispersions of glibenclamide in neusilin UFL2. AAPS PharmSciTech 2016;17:1204-12.

Serajuddin ATM, Shah A. Conversion of solid dispersion prepared by acid-base interaction into 3 free-flowing and tabletable powder by using Neusilin US2. Int J Pharm 2015;484:172-80.

Cho CW, Kim SJ, Na YG, Bang KH, Lee HJ, Wang M, et al. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int J Pharm 2019;555:11-8.

Sruti J, Patra CN, Swain S, Panigrahi KC, Patro AP, Beg S, et al. Improvement in the dissolution rate and tableting properties of cefuroxime axetil by melt-granulated dispersion and surface adsorption. Acta Pharm Sin B 2013;3:113-22.

Lee J, Jo K, Cho JM, Lee H, Kim EK, Kim HC, et al. Enhancement of aqueous solubility and dissolution of celecoxib through phosphatidylcholine-based dispersion systems solidified with adsorbent carriers. Pharmaceutics 2018;11:1.

Medarevic D, Vojinovic T, Vranic E, Potpara Z, Krstic M, Djuris J, et al. Development of ternary solid dispersions with hydrophilic polymer and surface adsorbent for improving dissolution rate of carbamazepine. Saudi Pharm J 2018;26:725-32.

Teixeira CCC, Mendonca LM, Bergamaschi MM, Queiroz RHC, Souza GEP, Antunes LMG, et al. Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech 2016;17:252-61.

Sriamornsak P, Kontong S, Weerapol Y, Nunthanid J, Sungthongjeen S, Limmatvapirat S. Manufacture of ternary solid dispersions composed of nifedipine, eudragit E and adsorbent. Adv Mater Res 2011;317:185-8.

Kaushik D, Singh N, Arora A. Enhancement of dissolution profile of gliclazide by solid dispersion adsorbates. Latt Am J Pharm 2011;30:2057-60.

Mahajan A, Surti N, Koladiya P. Solid dispersion adsorbate technique for improved dissolution and flow properties of lurasidone hydrochloride: characterization using 32 factorial design. Drug Dev Ind Pharm 2018;44:463-71.

Published

2021-05-07

How to Cite

S., S. V., & C., V. R. (2021). FUNDAMENTAL ASPECTS OF A THIRD COMPONENT USED IN TERNARY SOLID DISPERSION: A REVIEW. International Journal of Applied Pharmaceutics, 13(3), 11-17. https://doi.org/10.22159/ijap.2021v13i3.40890

Issue

Section

Review Article(s)