Multi-functional Carbon Dots: A Systematic Overview

Multi-functional Carbon Dots: A Systematic Overview

  • MUTHADI RADHIKA REDDY Guru nanak school of pharmacy JNTUH
  • KUMAR SHIVA GUBBIYAPPA

Abstract

Carbon dots (CDs) have emerged as a potential material in the multifarious fields of biomedical applications due to their numerous advantageous properties including tunable fluorescence, water solubility, biocompatibility, low toxicity, small size and ease of modification, inexpensive scale-up production, and versatile conjugation with other targeted nanoparticles. Thus, CDs became a preferable choice in various biomedical applications such as nanocarriers for drugs, therapeutic genes, photo sensitizers, unique electronic, fluorescent, photo luminescent, chemiluminescent, and electro chemiluminescent, drug/gene delivery and optoelectronics properties are what gives them potential in sensing and antibacterial molecules. Further, their potentials have also been verified in multifunctional diagnostic platforms, cellular and bacterial bio-imaging, development of nanomedicine, etc. This present review provides a concise insight into the progress and evolution in the field of carbon dots research with respect to synthesis methods and materials available in bio-imaging, theranostic, cancer, gene therapy, diagnostics, etc. Further, our discussion is extended to explore the role of CDs in nanomedicine and nano theranostic, biotherapy which is the future of biomedicine and also serves to discuss the various properties of carbon dots which allow chemotherapy and gene therapy to be safer and more target-specific, resulting in the reduction of side effects experienced by patients and also the overall increase in patient compliance and quality of life and representative studies on their activities against bacteria, fungi, and viruses reviewed and discussed.  This study will thus help biomedical researchers in percuss the potential of CDs to overcome various existing technological challenges.

Keywords: carbon dots, sensing, bio-imaging probes, biotherapy, drug delivery, multi-drug resistance, gene therapy.

Author Biography

MUTHADI RADHIKA REDDY, Guru nanak school of pharmacy JNTUH

Pharmacy

References

REFERENCES
1. Mishra V, Patil A, Thakur S, Kesharwani P. Carbon dots: emerging theranostic nanoarchitectures. Drug Discov Today 2018;23:1219-32.
2. Xiao C, Lai L, Zhang L, et al. Spectroscopic and Isothermal Titration Calorimetry Studies of Binding Interactions Between Carbon Nanodots and Serum Albumins. J Solution Chem 2018; 47:1438-48.
3. Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G. Polyamine-functionalized carbon quantum dots for chemical sensing. Anal Chem.2012;84:6220–4.
4. Peng H, Zhang L, Kjällman THM, Soeller C. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. Communication. 2007;129:3048–9.
5. Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X. Fluorescent probes for “off-on” highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon dots. Talanta. 2016; 152:288–300.
6. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969–76.
7. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W. Nanocarrier for gene delivery and bioimaging based on carbon dots with PEI passivation enhanced fluorescence. Biomaterials. 2012;33:3604–13.
8. Sharma S, Singh N, Nepovimova E, et al. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2020; 38: 1822-37.
9. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 2012;8:281–90.
10. Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B. 2017;5(45):8904–24.
11. Chen F, Gao W, Qiu X, Zhang H, Liu L, Liao P, Fu W, Luo Y. Graphene quantum dots in biomedical applications: recent advances and future challenges. Front LabMed.2017;1:192–9.
12. Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, et al. Carbon dots: Applications in bioimaging and theranostics. Int J Pharm 2019; 564:308-17.
13. S. Zhu, et al., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 2015;8:355–381.
14. M. Bacon, S. J. Bradley and T. Nann, Graphene quantum dots, Part. Part. Syst. Charact 2014;31: 415–428.
15. S. Zhu, et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chem. Commun 2011;47: 6858–6860.
16. Tao S, Zhu S, Feng T, Xia C, Song Y, Bai Y. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: a review. Mater Today Chem 2017; 6:13–25.
17. Sun X, Lei Y. Fluorescent carbon dots and their sensing applications. Trends Anal Chem 2017; 89:163–80.
18. Shamsipur M, Barati A, Karami S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon 2017; 124:429–72.
19. Arora N, Sharma NN. Arc discharge synthesis of carbon nanotubes: comprehensive review. Diamond Relat Mater 2014; 50:135–50.
20. Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M. Organic dye for highly efficient solid-state dye -sensitized solar cells. Adv Mater 2005;17:813–815.
21. Shimizu KT, Neuhauser RG, Leatherdale CA, Empedocles SA, Woo W, Bawendi MG. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys Rev B 2001; 63:205316.
22. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19:63.
23. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4:435.
24. P. G. Luo, et al., Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 2014; 4(21):10791–10807.
25. Guo Y, Wang Z, Shao H, Jiang X. Hydrothermal synthesis of highly fluorescent carbon
nanoparticles from sodium citrate and their use for the detection of mercury ions.
Carbon 2013;52:583–9.
26. F.Yuan, et al., Shining carbon dots: synthesis and biomedical and optoelectronic
Applications. Nano Today 2016;11(5): 565–586.
27. Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen
Z, Li Z, Wu M. Cutting sp2 clusters in graphene sheets into colloidal graphene
quantum dots with strong green fluorescence. J. Mater. Chem.2012;22: 3314-3318.
28. Jie G, Huang H, Sun X, Zhu J-J. Electrochemiluminescence of CdSe quantum dots.
for immune sensing of human prealbumin. Biosens. Bioelectron.2008;23:1896-1899.
29. Liu X, Jiang H, Lei J, Ju H. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal chem 2007; 79: 8055-8060.
30. G. A. M. Hutton, B. C. M. Martindale, and E. Reisner. Carbon dots as photosensitisers for solar-driven catalysis. Chemical Society Reviews 2017;46: 6111–6123.
31. J. Wang, J. Qiu. A review of carbon dots in biological applications. Journal of Materials Science. 2016;51:4728–4738.
32. S.Y.Lim,W. Shen, and Z. Gao. Carbon quantum dots and their applications. Chemical Society Reviews 2015;44:362–381.
33. Lin H, Ding L, Zhang B, Huang J. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid. R Soc Open Sci 2018;5:2054–5703.
34. Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 2014;139:2322–5.
35. Guo X, Zhu Y, Zhou L, Zhang L, You Y, Zhang H, Hao J. A simple and green approach to prepare carbon dots with pH-dependent fluorescence for patterning and bioimaging. RSC Adv 2018;8:38091–9.
36. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX. Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/ in vivo imaging and sensing. J Mater Chem C 2013;1:4676–84.
37. X. T. Zheng, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 2015;11:1620–1636.
38. Xu X, Ray R, Gu Y, Ploehn H. J., Gearheart L, Raker K, Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J Am Chem Soc 2004; 126:12736?12737.
39. Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Meziani M J, Harruff, BA, Wang, X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca M, Xie SY. Quantum- Sized Carbon Dots for Bright and Colorful Photoluminescence. J Am Chem Soc 2006;128: 7756?7757.
40. Li H, Kang Z, Liu Y, Lee ST. Carbon Nanodots: Synthesis, Properties and Applications. J Mater Chem 2012; 22: 24230?24253.
41. Zuo J, Jiang T, Zhao X, Xiong, S. Zhu Z. Preparation and application of fluorescent carbon dots. Journal of Nanomaterials 2015;Article ID 787862.
42. Zhou J, Booker C, Li R, Zhou X, Sham T, Sun X, Ding Z. An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J Am Chem Soc 2007; 129:744?745.
43. Zheng L, Chi Y, Dong Y, Lin J, Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. Journal of American Chemical Society 2009;131:4564-4565.
44. Li H, He X, Kang Z, et al. Water?Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie, 2010;49: 4430–4434.
45. Ray S, Saha A, Jana NR, et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 2009; 113:18546–18551.
46. J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun and Z. Ding. J Am Chem Soc 2007;129:744.
47. D. B. Shinde and V. K. Pillai, Chem. Eur. J 2012;18:12522.
48. Bao L, Zhang L, Tian ZQ, Zhang L, Liu C, Lin Y, Qi B. Adv. Mater., 2011; 23:5801.
49. Zheng L, Chi Y, Dong Y, Lin J, Wang B. J Am Chem Soc 2009; 131: 4564.
50. Q.L. Zhao, Z.L. Zhang, B.H. Huang, J. Peng, M. Zhang and D.W. Pang. Chem. Commun 2008; 5116. DOI: 10.1039/b812420e.
51. Nakamura M, Canevari TC, Cincotto FH, et al. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim Acta 2016;209: 464–470.
52. Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 2009; 21:5563–5565.
53. Xiao J, Liu P, Wang CX, Yang GW. External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Diamond Relat Mater 2017; 87:140–220.
54. Y.P. Sun, B. Zhou, Y. Lin et al. Quantum-sized carbon dots for bright and Colorful photoluminescence. Journal of American Chemical Society 2006;128:7756-7757.
55. V. Thongpool, P. Asanithi, and P. Limsuwan. Synthesis of carbon particles using laser ablation in ethanol. Procedia Engineering 2012;32: 1054–1060.
56. C. Doñate - Buendia, R. Torres-Mendieta, A. Pyatenko,E. Falomir, M. Fernández- Alonso, and G. Mínguez-Vega. Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega 2018;3:2735–2742.
57. Li H, Kang Z, Liu Y, et al. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012; 22:24230–24253.
58. Wang D, Wang Z, Zhan Q, et al. Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering 2017; 3:402–408.
59. Wang Q, Huang X, Long Y, et al. Hollow luminescent carbon dots for drug delivery. Carbon 2013; 59:192–199.
60. Lu L, Zhu Y, Shi C, Pei YT. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon 2016;109:373–83.
61. Xu X, Ray R, Gu Y et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of American Chemical Society 2004 ;126:12736-12737.
62. M. Bottini, C. Balasubramanian, M. I. Dawson, A. Bergamaschi, S. Bellucci, and T. Mustelin. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. The Journal of Physical Chemistry B 2006;110:831–836.
63. S.Dey, A. Govindaraj, K. Biswas, and C. N. R. Rao. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chemical Physics Letters 2014;595:203–208.
64. Yang S, Sun J, Li X, Zhou W, Wang, He, P, et al. Largescale fabrication of heavy doped carbon quantum dots with tunable photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014; 8660–8667.
65. Hu SL, Niu KY, Sun, J, Yang J, Zhao NQ, Du XW. One step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 2009; 19:484–488.
66. Tuerhong M, Yang X, Xue-Bo Y. Review on carbon dots and their applications. Chin J Anal Chem 2017; 45:139–50.
67. Zeng YW, Ma DK, Wang W, Chen JJ, Zhou L, Zheng YZ, et al. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids. Appl Surf Sci 2015; 342:136–43.
68. Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, et al. Highly photoluminescent carbon dots for multicolor patterning sensors, and bioimaging. Angrew Chem Int Ed 2013; 52:1–6.
69. Bhunia SK, Saha A, Maity A.R, Ray SC, Jana NR. Carbon nanoparticle-based fluorescent bioimaging probes Sci. Rep. 2013;3.
70. Xu Y, Wu M, Liu Y, Feng XZ, Yin XB, He XW, Zhang YK. Nitrogen-Doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem Eur J 2013;19:2276–2283.
71. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP. Chem Mater 2008; 20: 4539.
72. B. C. M. Martindale, G. A. M. Hutton, C. A. Caputo, and E. Reisner. Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. Journal of American Chemical Society 2015;137:6018–6025.
73. Guo Y, Zhang L, Cao F, and Leng Y. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Scientific Reports 2016;6:35795.
74. Rong M, Feng Y, Wang Y, Chen X. One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging. Sensors and Actuators B: Chemical 2017;245:868–874.
75. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications 2009;34:5118–5120.
76. Wei X, Xu Y, Li Y, Yin X, He X. Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing. RSC Adv. 2014;4:44504–8.
77. Zeng YW, Ma DK, Wang W, Chen JJ, Zhou L, Zheng YZ, et al. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids. Appl Surf Sci 2015; 342:136–43.
78. Zhai X, Zhang P, Liu C, Bai T, Li W, Da L, Liu W. Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chem Commun 2012;48:7955–7.
79. Liu Y, Xiao N, Gong N, Wang H, Shi X, Gu W, Ye L. Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Carbon. 2014;30:10933–9.
80. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun. 2009.
81. Kiran S, Misra RDK. Mechanism of intracellular detection of glucose through nonenzymatic and boronic acid functionalized carbon dots. J Biomed Mater Res Part A. 2015;103:2888–97.
82. L. Cao, S. Sahu, P. Anilkumar, C.E. Bunker, J. Xu, K.A.S. Fernando, et al., J. Am.Chem. Soc 2011;133: 4754.
83. Liu C, Chang K, Guo W, Li H, Shen L, Chen W, et al. Appl Phys Lett2014;105:073306.
84. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG. Highly luminescent organosilane- functionalized carbon dots. Adv Funct Mater 2011;21:1027–31.
85. Wan JY, Yang Z, Liu ZG, Wang HX. Ionic liquid-assisted thermal decomposition synthesis of carbon dots and graphene-like carbon sheets for optoelectronic application. RSC Adv 2016;6:61292–300.
86. Q. Wang, et al. Hollow luminescent carbon dots for drug delivery. Carbon 2013; 59: 192–199.
87. Wang W, Lu Y, Huang H, Feng J, Chen J, Wang A. Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging. Analyst. 2014;139:1692–6.
88. M. Thakur, Sunil Pandey, Ashmi Mewada, Vaibhav Patil, Monika Khade, Ekta Goshi. Antibiotic Conjugated Fluorescent Carbon Dots as a Theranostic Agent for Controlled Drug Release, Bioimaging, and Enhanced Antimicrobial Activity. JDrug Del 2014;1-9
89. Cao X, Wang Q, Zhou J, Deng W, Yu Q, Chen J, et al. Porphyra polysaccharide-derived carbon dots for nonviral co-delivery of different gene combinations and neuronal differentiation of ectodermal mesenchymal stem cells. Nanoscale 2017;9:10820–31.
90. Yang W, Nie H, Gong Y, Jing J, Gao L, et al. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens Bioelectron 2017;96 :300–7.
91. Y.F.Wu, et al., Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy, Sci Rep 2016; 6: 21170.
92. Ding H, Du F, Liu P, Chen Z, Shen J. DNA-Carbon Dots Function as Fluorescent Vehicles for Drug Delivery. ACS Appl Mater Interfaces 2015; 7: 6889?6897.
93. Reckmeier CJ, Schneider J, Xiong Y, Hausler J, Kasak P, Schnick W, Rogach AL. Aggregated Molecular Fluorophores in the Ammonothermal Synthesis of Carbon Dots. Chem Mater 2017; 29:10352?10361.
94. Ding H, Ji Y, Wei JS, Gao QY, Zhou ZY, Xiong HM. Facile Synthesis of Red-Emitting Carbon Dots from Pulp-Free Lemon Juice for Bioimaging. J Mater Chem B 2017; 5: 5272?5277.
95. Zhang Z, Pei K, Yang Q, Dong J, Yan Z, Chen J. A Nanosensor Made of Sulfur-Nitrogen Co-Doped Carbon Dots for “off-on” Sensing of Hypochlorous Acid and Zn(II) and its Bioimaging Properties. New J Chem 2018;42: 15895?15904.
96. J. Ge, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice, Adv. Mater., 2015; 27: 4169–4177.
97. Sun X, Lei Y. Fluorescent carbon dots and their sensing applications. Trends Anal Chem 2017;89 :163–80.
98. Xue M, Zhang L, Zhan Z, Zou M, Huang Y, Zhao S. Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging. Talanta 2016;150:324–30.
99. Wang Y, Gao D, Chen Y, Hu G, Liu H, Jiang Y. Development of N,S-doped carbon dots as a novel matrix for the analysis of small molecules by negative ion MALDI-TOF MS. RSC Adv 2016;6:79043–9.
100. Yang Z, Li Z, Xu M, Ma Y, Zhang J, Su Y, et al. Controllable synthesis of fluorescent
carbon dots and their detection application as nanoprobes. Nano-Micro Lett 2013;5:
247–59.
102. Hu S, Wei Z, Chang Q, Trinchi A, Yang J. A facile and green method towards coal
Base fluorescent carbon dots with photocatalytic activity. Appl Surf Sci 2016;378:
402–7.
103. Amin N, Afkhami A, Madrakian T. Construction of a novel “off-on” fluorescence
sensor for highly selective sensing of selenite based on europium ions induced
crosslinking of nitrogen-doped carbon dots. JOL 2018; 194:768–77.
104. Atashi M, Naghdi T, Golmohammadi H, Saeedi I, Alanezhad M. Carbon quantum
dots originated from chitin nanofibers as a fluorescent chemoprobe for drug sensing.
J Ind Eng Chem 2017;52:162–7.
105. Shen P, Xia Y. Synthesis-modification integration: one-step fabrication of boronic
acid functionalized carbon dots for fluorescent blood sugar sensing. Anal Chem
2014;86:5323–9.
106. Li C, Liu W, Sun X, Pan W, Wang J. Multi sensing functions integrated into one
carbon dot-based platform via different types of mechanisms. Sens Actuators B
2017;252: 544–53.
107. Thakur M, Pandey S, Mewada A, et al. Antibiotic conjugated fluorescent carbon dots
as a theranostic agent for controlled drug release, bioimaging, and enhanced antimicro-
bial activity. J Drug Deliv 2014; 2014:282193.
108. Norrby SR, Nord CE, Finch R, In ESCM. Lack of development of new antimicrobial
drugs: a potential serious threat to public health. Lancet Infect Dis 2005; 5: 115-9.
109. J. Song, J. Li, Z. Guo et al. A novel fluorescent sensor based on sulfur and nitrogen
co-doped carbon dots with excellent stability for selective detection of doxycycline in
raw milk,” RSC Advances. 2017;7:12827–12834.
110. Zhao C, Jiao Y, Zhang L, and Yang Y. One-step synthesis of S, B co-doped carbon
dots and their application for selective and sensitive fluorescence detection of diethyl-
stilbestrol. New Journal of Chemistry 2018;4:2857–2864.
111. Harroun SG, Chen SY, Unnikrishnan B, Li YJ, Huang CC. Solid-state synthesis of self
functional carbon quantum dots for detection of bacteria and tumor cells. Sensors and
Actuators B Chemical 2016;228:465–470.
112. Zhong D, Zhuo Y, Feng Y, Yang X. Employing carbon dots modified with vancomycin
for assaying Gram-positive bacteria like Staphylococcus aureus Biosensors Bioelectro-
nics 2015;74:546–553.
113. Xu H, Yang X, Li G, Zhao C, and X. Liao X. Green synthesis of fluorescent carbon dots
for selective detection of tartrazine in food samples. Journal of Agricultural and Food
Chemistry2015;63:6707–6714.
114. Hu J, Bao Z, Tang W, Wu H, Pan J, Xu X, et al. Surface state engineering carbon dots
as multi-band active sensitizers for ZnO nanowire array photoanode to boost solar
water splitting. Carbon 2017;121: 201–8.
115. Yang J, Zhang X, Ma Y-H, Gao G, Chen X, Jia H-R, et al. Carbon Dot-Based Platform
for Simultaneous Bacterial Distinguishment and Antibacterial Applications. Acs Appl
Mater Inter. 2016; 8: 32170-81.
116. Yang J. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence
emission: Fast Gram-type identification and selective Gram-positive bacterial
inactivation. Carbon. 2019; 146: 827-39.
117. Dong XL, Al Awak M, Tomlinson N, Tang YG, Sun YP, Yang LJ. Antibacterial effects
of carbon dots in combination with other antimicrobial reagents. Plos One 2017; 12:
0185324.
118. Huang SM, Gu JJ, Ye J, Fang B, Wan SF, Wang CY, et al. Benzoxazine monomer derived
carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interf Sci. 2019;
542: 198-206.
119. Sun S, Chen J, Jiang K, Tang Z, Wang Y, Li Z, Liu C, Wu A. Ce6-Modified
Carbon Dots for Multimodal-Imaging-Guided and Single-NIR-Laser-Triggered
Photothermal/Photodynamic Synergistic Cancer Therapy by Reduced Irradiation Power.
ACS Appl Mater Interfaces 2019; 11:5791?5803.
120. Geng, B.; Yang, D.; Pan, D.; Wang, L.; Zheng, F.; Shen, W.; Zhang, C.; Li, X. NIR-
Responsive Carbon Dots for Efficient Photothermal Cancer Therapy at Low Power
Densities. Carbon 2018, 134, 153?162.
121. Yang J, Zhang X, Ma YH, Gao G, Chen X, Jia HR, Li YH, Chen Z, Wu, F.
G. Carbon Dot-Based Platform for Simultaneous Bacterial Distinguishment and
Antibacterial Applications. ACS Appl. Mater. Interfaces 2016; 8:32170?32181.
122. Wang M, Hou C, Chen S. Facile Preparation of Carbon- Dot-Supported Nanoflowers
for Efficient Photothermal Therapy of Cancer Cells. Dalton Trans. 2018;47:1777-1781.
123. Cao L, Wang X, Meziani MJ, et al. Carbon dots for multiphoton bioimaging. J Am
Chem Soc 2007;129: 11318–11319.
124. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, Tan H, Zhao Z, Xie Z, Sun Z. Highly
luminescent S, N co-doped graphene quantum dots with broad visible absorption bands
for visible light photocatalysts. Nanoscale 2013;5: 12272–12277.
125. Da Silva JCE, Gonc¸alves HM. Analytical and bioanalytical applications of carbon dots.
TrAC Trends Anal Chem. 2011; 30:1327–1336.
126. Xu, XY, Ray R, Gu YL, Ploehn, HJ, Gearheart L, Raker K. Electrophoretic analysis and
purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc
2004; 126:12736–12737.
127. Dang H, Huang LK, Zhang Y, Wang CF, Chen S. Large-scale ultrasonic fabrication of
white fluorescent carbon dots. Ind Eng Chem Res 2016;55:5335–41.
128. Ray S, Saha A, Jana NR, Sarkar R. Fluorescent carbon nanoparticles: synthesis,
characterization, and bioimaging application. J Phys Chem C 2009;113:18546–51.
129. Peng H, Sejdic JT. Simple aqueous solution route to luminescent carbogenic dots from
carbohydrates. Chem Mater2009;21:5563–5.
130. Sun, X, and Lei Y. Fluorescent carbon dots and their sensing applications. TrAC Trend
Anal Chem 2017; 89:163–180.
131. Anwar S, Ding H, Xu M, Hu X, Li Z, Wang J. Recent advances in synthesis, optical
properties, and biomedical applications of carbon dots. ACS Appl. Bio. Mater 2019;2:
2317–2338.
132. P. Mirtchev, et al. Solution phase synthesis of carbon quantum dots as sensitizers for
nanocrystalline TiO2 solar cells. J Mater Chem 2012;22:1265–1269.
133. Deng J, Lu Q, Mi N, Li H, Liu M, Xu M, Tan L, Xie Q, Zhang Y, Yao S. Electro-
chemical synthesis of carbon nanodots directly from alcohols. Chem A Eur J 2014;
20:4993–9.
134. H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, Z. Kang, Large scale electrochemical
synthesis of high-quality carbon nanodots and their photocatalytic property. Dalton Trans
2012;41:9526–9531.
135. Song Y, Shi W, Chen W, Li X, Ma H. Fluorescent carbon nanodots conjugated with
folic acid for distinguishing folate-receptor-positive cancer cells from normal cells.
J Mater Chem2012;22:12568–73.
136. Wang Y. and Hu A. Carbon quantum dots: synthesis, properties and applications.
Journal of Materials Chemistry C 2014.
137. Lu S, Sui L, Liu J, Zhu S, Chen A, Jin M, Yang B. Adv. Mater 2017; 29:1603443.
138. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Microwave synthesis of fluorescent
carbon nanoparticles with electrochemiluminescence properties. Chem Commun.2009.
139. Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP. Deep
ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots.
ACS Nano2012;6:5102–10.
140. Kuruvilla SJ, Li S, Sansalone L, Fortes B, Zheng I, Blackwelder P, Pumilia C, Micic M,
Orbulescu J, Leblanc RM. Dihydrolipoic acid conjugated carbon dots accelerate human
insulin fbrillation. J Parkinsons Dis Alzheimer Dis 2015; 2:1–7.
141. Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X. Fluorescent probes for “of-
on” highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon
dots. Talanta. 2016; 152:288–300.
142. P. Mirtchev, et al., Solution phase synthesis of carbon quantum dots as sensitizers for
nanocrystalline TiO2 solar cells. J Mater Chem 2012; 22:1265–1269.
143. L. Ji R, Cao X, Lin J, Jiang H, Li X, Teng KS, Luk CM, Zeng S, Hao J, Lau SP. Deep
ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots.
ACS Nano2012;6:5102–10.
144. Liu H, Wang Q, Shen G, Zhang C, Li C, Ji W, Wang C, Cui D. A multifunctional
ribonuclease A-conjugated carbon dot nanosystem cluster for synchronous cancer
imaging and therapy. Nanoscale Res Lett 2014;9:397.
145. Zheng M, Xie Z, Qu D, Li D, Du P, Jing X, Sun Z. On–Off–On fluorescent carbon dot
nanosensor for recognition of chromium (VI) and ascorbic acid based on the inner
filter effect. ACS Appl Mater Interfaces 2013;5:13242–1324.
146. Liu, R., Wu, D., Liu, S., Koynov, K., Knoll, W., Li, Q. An Aqueous Route to Multicolor
Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angew. Chem., Int.
Ed2009; 48: 4598?4601.
147. B.C. Rai, Nitu Kumari, Rohit Raj, AnwarulHoda. Quantum Dots for Wastewater: A
Future Purifier. International Journal of Advanced Research in Engineering and
Technology2018;9:93 – 99.

148. Zhu H, Wang X, Li Y, Wang Z, Yang F, Yang X. Microwave synthesis of fluorescent
carbon nanoparticles with electrochemiluminescence properties. Chem Commun. 2009.
https://doi.org/10.1039/B907612C.
149. Zhuo Y, Miao H, Zhong D, Zhu S, Yang X. One-step synthesis of high quantum-yield
and excitation-independent emission carbon dots for cell imaging. Mater Lett 2015;
139:197–200.
150. Ru,W, L, KQ. , Tang, ZR. And Xu, YJ. Recent progress on carbon quantum dots:
synthesis, properties, and applications in photocatalysis, Journal of Materials Chemistry
A 2017; DOI: 10.1039/C6TA08660H.
151. D. Pan, et al., Hydrothermal route for cutting graphene sheets into blue-luminescent
graphene quantum dots, Adv. Mater.2010; 22: 734–738.
152. Deng J, Lu Q, Mi N, Li H, Liu M, Xu M, Tan L, Xie Q, Zhang Y, Yao S. Electro-
chemical synthesis of carbon nanodots directly from alcohols. Chem A Eur J.
2014;20(17):4993–9.
153. Jiang Y, Han Q, Jin C, Wang B. A fluorescence turn-of chemosensor based on N doped
carbon quantum dots for detection of Fe3+ in aqueous solution. Mater Lett.2015;
141:366–8.
154. Lim, SY, Shen W, Gao, Z. Carbon quantum dots and their applications, Research gate
2014. DOI: 10.1039/c4cs00269e.
155. Cai QY, Li J, Ge J, Zhang L, Hu YL, Li ZH, Qu LB. A rapid fuorescence “switch-on”
assay for glutathione detection by using carbon dots-MnO2 nanocomposites. Biosens
Bioelectron 2015;72:31–6.
156. B.C. Rai, Nitu Kumari, Rohit Raj and Monalisa, Quantum Dot Confined CDSE
Semiconductor. International Journal of Advanced Research in Engineering and
Technology 2018;9:100 – 106.
157. Wang Y, Hu A., et al. Carbon quantum dots: synthesis, properties, and applications. J
Mater Chem C.2014; 2:6921–6939.
158. Liu R, Wu D, Liu S, et al. An aqueous route to multicolor photoluminescent carbon dots
using silica spheres as carriers. Angew Chem 2009; 121:4668–4671.
159. Zou C, Foda MF, Tan X, Shao K, Wu L, Lu Z, Bahlol HS, Han H. Carbondot and
quantum-dot-coated dual-emission Core-satellite silica nanoparticles for ratiometric
intracellular cu(2+) imaging. Anal Chem2016;88:7395–403.
160. Zhou, J., Sheng, Z., Han, H., Zou, M., Li, C. Facile Synthesis of Fluorescent Carbon
Dots Using Watermelon Peel as a Carbon Source. Mater. Lett 2012; 66: 222?224.
161. Wei X, Xu Y, Li Y, Yin X, He X. Ultrafast synthesis of nitrogen-doped carbon dots via
neutralization heat for bioimaging and sensing. RSC Adv 2014;4:44504–44508.
doi: 10.1039/C4RA08523J.
162. Li Z, Yu H, Bian T, Zhao Y, Zhou C, Shang L, Liu Y, Wu L, Tung C, Zhang T. Highly
luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for
mercuric and iodide ions. J Mater Chem C 2015; 3:1922–8.
163. Martindale BC, Hutton GA, Caputo CA, Reisner E. Solar hydrogen production using
carbon quantum dots and a molecular nickel catalyst. J Am Chem soc 2015;137:
6018-6025.
164. Wang F, Wang S, Sun Z, Zhu H. Study on the ultrasonic single-step synthesis and
optical properties of nitrogen-doped carbon fuorescent quantum dots. Fullerenes
Nanotubes Carbon Nano struct 2015;23:769–76.
165. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG. Highly luminescent organ silane-
functionalized carbon dots. Adv Funct Mater2011;21(6):1027–103.
166. Ray S, Saha A, Jana NR, et al. Fluorescent carbon nanoparticles: synthesis,
characterization, and bioimaging application. J Phys Chem C. 2009;113:18546–18551.
167. Wang R, Lu KQ, Tang ZR, Xu YJ. Recent progress in carbon quantum dots:
synthesis, properties, and applications in photocatalysis. J Mater Chem A 2017;
5:3717?3734.
168. Sun D, Ban R, Zhang P, Wu G, Zhang J, Zhu J. Hair Fiber as a Precursor for
Synthesizing of Sulfur and Nitrogen-Co-Doped Carbon Dots with Tunable Lumine-
cence Properties. Carbon 2013;64:424?434.
169. K.P. Loh, et al. Graphene oxide as a chemically tunable platform for optical applications,
Nat. Chem., 2010;2:1015–1024.
170. Q. Mei, et al. Fluorescent graphene oxide logic gates for discrimination of iron (3+) and
iron (2+) in living cells by imaging. Chem Commun 2012; 48:7468–7470.
171. Zhuo SM Shao and Lee ST. Up conversion and down conversion fluorescent
graphene quantum dots: ultrasonic preparation and photocatalysis, ACS Nano2012;
6:1059–1064.
172. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z. In vivo NIR fluorescence
carbo dot produced from carbon nanotubes and graphite. Small 2012;8: 281–290.
173. Benito-Alifonso D, Tremel S, Hou B, Lockyear H, Mantell L, Fermin DJ, Verkade P,
Berry M, Galan MC. Lactose as a Trojan horse for quantum dot cell transport,
AngewandteChemie2014;126: 829–833.
174. Gemmill KB, Muttenthaler M, Delehanty JB, Stewart MH, Susumu K, Dawson PE
Evaluation of diverse peptidyl motifs for cellular delivery of semiconductor quantum
Dots. Anal Bioanal Chem 2013;405;6145–6154.
175. Marradi M, Martin?Lomas M, Penades MS. Adv. Carbohydr Chem Biochem 2010;
64:211.
176. Jia X, Pei M, Zhao X, Tian K, Zhou T, Liu P. PEGylated oxidized DOX prodrug
conjugate nanoparticles cross-linked with fluorescent carbon dots for tumour
theranostics. ACS Biomater Sci Eng 2016;2:1641–1648.
177. Cai X, Li X, Liu Y, Wu G, Zhao Y, Chen F, Gu Z. Galactose decorated acid labile
nanoparticles encapsulating quantum dots for enhanced cellular uptake and subcellular
localization. Pharm Res 2012; 29: 2167–2179.
178. Blanco-Canosa JB, Bradburne CE, Susumu K, Stewart MH, Prasuhn DE, Dawson PE,
Medintz IL., Site-specific cellular delivery of quantum dots with chemoselectively-
assembled modular peptides. Chem Commun 2013; 49:7878–7880.
179. Boeneman K, Delehanty JB, Blanco-Canosa JB, Susumu K, Stewart MH, Husston AL,
G. Dawson, S. Ingale, R. Walters, Selecting improved peptidyl motifs for cytosolic
delivery of disparate protein and nanoparticle materials, Acs Nano 2013;7:3778–3796.
180. Xu P, Li J, Shi L, Selke MB, Chen X, Wang. Synergetic effect of functional
cadmium–tellurium quantum dots conjugated with gambogic acid for HepG2 cell-
labeling and proliferation inhibition. Int J Nanomed 2013;8:3729.
181. Liu BR, Y.W. Huang JG, Winiarz HJ, Chiang HJ, Lee. Intracellular delivery of
quantum dots mediated by a histidine-and arginine-rich HR9 cell penetrating peptide
through the direct membrane translocation mechanism, Biomaterials 2011;32:3520-
3537.
182. Tan T, Wan A, Li H. Ag2S quantum dots conjugated chitosan nanospheres toward
light-triggered nitric oxide release and near-infrared fluorescence imaging, Langmuir
2013;2:15032–15042.
183. Wen CJ, Sung CT, Aljuffali IA, Huang YJ, Fang JY. Nanocomposite liposomes
containing quantum dots and anticancer drugs for bioimaging and therapeutic delivery:
a comparison of cationic, PEGylated and deformable liposomes, Nanotechnology 2013;
24: 325101.

184. Wang J, Li Q, Zhou JE, Wang Y, Yu L, Peng H, Zhu J. Synthesis, Characterization
and cells and tissues imaging of carbon quantum dots. Opt Mater 2017a;72:15-19.
185. Guo XL, Ding ZY, Deng SM, Shen XC, Jiang BP, Liang H. A novel strategy of transition-
metal doping to engineer absorption of carbon dots for near-infrared photothermal/photo-
photothermal/photodynamic therapies. Carbon 2019;19:519–30.
186. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum
dots and carbon dots: properties, syntheses, and biological applications. Small
2015b;11:1620–1636.
187. Wu F, Su H, Cai Y, Wong WK, Jiang W, Zhu X. Porphyrin-implanted carbon nanodots
for photoacoustic imaging and in vivo breast cancer ablation. ACS Appl Biol Mater
2018;1:110–7.
188. Campos BB, Oliva MM, Cáceres RC, Castellón ER, Jiménez JJ, da Silva JCGE,
Algarra M. Carbon dots on based folic acid coated with PAMAM dendrimer as
platform for Pt(IV) detection. J Colloid Interface Sci 2016;465:165–73.
189. Gao L, Zhao X, Wang J, Wang Y, Yu L, Peng H, Zhu J. Multiple-functionalized
carbon quantum dots for targeting glioma and tissue imaging. Opt Mater 2018b;75:
764–769.
190.Beack S, Kong WH, Jung HS, Do IH, Han S, Kim H, Kim KS, Yun SH, Hahn SK.
Photodynamic therapy of melanoma skin cancer using carbon dotchlorin e6-Hyaluronate
conjugate. Acta Biomater2015; 26:295–305.
191. Zheng DW, Li B, Li CX, Fan JX, Lei Q, Li C, Xu Z, Zhang XZ. Carbondot-decorated
carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor
via water splitting. ACS Nano 2016;10:8715–22.
192. Yao YY, Gedda G, Girma WM, Yen CL, Ling YC, Chang JY. Magneto fluorescent
carbon dots derived from crab shell for targeted duamodality bioimaging and drug
delivery. ACS Appl. Mater. Interfaces 2017;9 (16),3887–13899.
193. Wang Y, Cui Y, Zhao Y, He B, Shi X, Di D, Zhang Q, Wang S. Fluorescent
carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme
dual-responsivetargetedandcontrolleddrugdeliveryandreal-timebioimaging.
Eur J Pharm. Biopharm 2018b;117:105–115.
194. Kim D, et al. Graphene quantum dots prevent ?-synucleinopathy in Parkinson's disease.
Nat Nanotechnol 2018;13(9):812.
195. Teng X, Ma C, Ge C, Yan M, Yang J, Zhang Y, Morais PC, Bi H. Green synthesis
of Nitrogen-Doped Carbon Dots from Konjac Flour with ?Off-On? Fluorescence by
and L-Lysine for Bioimaging J Mater Chem. B 2014; 2:4631?4639.
196. Sun T, Zheng M, Xie Z, Jing X. Supramolecular hybrids of carbon dots with doxorubicin:
synthesis, stability and cellular trafcking. Mater Chem Front 2017;1:354–60.
197. Zhang B, Liu C, Liu Y. A novel one-step approach to synthesize fuorescent carbon
nanoparticles. Eur J Inorg Chem2010;28:4411–4.
198. Malishev R, et al. Chiral modulation of amyloid beta fibrillation and cytotoxicity by
enantiomeric carbon dots. Chem Commun 2018;54:7762–5.
199. Zheng M, Liu X, Li J, Qu D, Zhao H, Guan X, Hu X, Xie Z, Jing X, Sun Z. Integrating
oxaliplatin with highly luminescent carbon dots: an unprecedented theranostic agent for
personalized medicine. Adv Mater. 2014;21:3554–60.
200. Li H, He X, Liu Y, et al. One-step ultrasonic synthesis of water-soluble carbon
nanoparticles with excellent photoluminescent properties. Carbon 2011; 49:605–609.
201. Zeng Q, Shao D, He X, Ren Z, Ji W, Shan C, Qu S, Li J, Chen L, Li Q. Carbon dots as a
trackable drug delivery carrier for localized cancer therapy in vivo. J Mater Chem B
2016;4:5119–26.

202. Hettiarachchi SD, et al. Triple conjugated carbon dots as a nano-drug delivery model for
glioblastoma brain tumors. Nanoscale 2019;11:6192–205.
203. Li S, Amat D, Peng Z, Vanni S, Raskin S, Angulo GD, Othma AM, Graham RM, Leblanc
RM. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target
paediatric brain tumor cells. Nanoscale 2016;8:16662–9.
204. Mewada A, Pandey S, Thakur M, Jadhav D, Sharon M. Swarming carbon dots for folic
acid-mediated delivery of doxorubicin and biological imaging. J Mater Chem B 2013;
2:698–705.
205. Gao N, Yang W, Nie H, Gong Y, Jing J, Gao L, Zhang X. Turn-on theranostic fluorescent
nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted
cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery.
Biosens Bio electron 2017; 96:300–7.
206. Wang L, Yin Y, Jain A, Zhou HS. Aqueous-phase synthesis of highly luminescent,
nitrogen-doped carbon dots and their application as bioimaging agents. Langmuir
2014;30(47):14270–5.
207. Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, Huo Q. Commercially activated carbon
as the source for producing multicolor photoluminescent carbon dots by chemical
oxidation. Chem Commun 2010;46:8812–4.
208. Xie Z, Feng Y, Wang F, Chen D, Zhang Q, Zeng Y, Lv W, Liu G. Construction of carbon
dots modifed MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light
photocatalytic activity for the degradation of tetracycline. Appl Catal B2018; 229:96–104.
209. Martindale BC, Hutton GA, Caputo CA, Reisner E. Solar hydrogen production using
carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc 2015;137(18):
6018–25.
210. Yang W, Zhang H, Lai J, Peng X, Hu Y, Gu W, Ye L. Carbon dots with red-shifted
photoluminescence by fluorine doping for optical bioimaging. Carbon2018; 128:78–85.
211. Wang F, Wang , Feng Y, Zeng Y, Xie Z. Novel ternary photocatalyst of single atom-
dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad-
spectrum photocatalytic degradation of naproxen. ApplCatal B 2018; 221:510–20.
212. Bourlinos AB, Rathi AK, Gawande MB, Hola K, Goswami A. Fe(III)- functionalized
carbon dots-highly efcient photoluminescence redox catalyst for hydrogenations of
olefns and decomposition of hydrogen peroxide. Appl Mater Today 2017; 7:179–84.
213. Parvin N, Mandal TK. Dually emissive P, N-co-doped carbon dots for fluorescent and
photoacoustic tissue-imaging in living mice. Micro chim Acta 2017;184(4):1117–2.
214. Photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-
tissue imaging. Nano Lett. 2013;13:2436–41.
215. Wang J, Gao M, Ho GW. Bidentate-complexes-derived TiO2/carbon dots photocatalysts:
in situ synthesis, versatile heterostructures, and enhanced H2 evolution. J Mater Chem
2014;2:5703–9.
216. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W.
Nanocarrier for gene delivery and bioimaging based on carbon dots with PEI passivation
enhanced fuorescence. Biomaterials2012;33:3604–13.
217. Chen B, Li F, Li S, Weng W, Guo H, Guo T, Zhang X, Chen Y, Huang T, Hong X, You
S, Lin Y, Zeng K, Chen S. Large scale synthesis of photoluminescent carbon nanodots
and their application for bioimaging. Nanoscale. 2013;5:1967–71.
218. Dong Y, Chen C, Zheng X, Gao L, Cui Z, Yang H, Guo C, Chi Y, Li CM. One-step and
high yield simultaneous preparation of single- and multilayer graphene quantum dots
from CX-72 carbon black. J Mater Chem. 2012;22:8764–6.
219. Hsu PC, Chang HT. Synthesis of high-quality carbon nanodots from hydrophilic
compounds: role of functional groups. Chem Commun 2012;48:3984–6.
220. Que Q, Xing Y, He Z, Yang Y, Yin X. Bi2O3/Carbon quantum dots hetero structured
photocatalysts with enhanced photocatalytic activity. Mater Lett 2017; 209:220–3.
221. Sun Y, Wang S, Li C, Luo P, Tao L, Wei Y, Shi G. Large scale preparation of graphene
quantum dots from graphite with tunable fluorescence properties. Phys Chem Chem
Phys 2013;15: 9907–13.
222. Zhou L, Geng J, Liu B. Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon
for Bioimaging and Sensing of Fe3+ and Hydrogen Peroxide. Part PartSystCharact
2013; 30:1086–92.
223. Mehta A, Mishra A, Kainth S, Basu S. Carbon quantum dots/TiO2 nanocomposite for
sensing of toxic metals and photodetoxifcation of dyes with kill waste by waste concept.
Mater Des 2018; 155:485–93.
224. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R, Gao H, Wei
H, Zhang H, Sun H, Yang B. Strongly green-photoluminescent graphene quantum dots
for bioimaging applications. Chem Commun 2011;47:6858–60.
225. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Yang L, Wang H, Xiao Y, Rong J. One-
step preparation of nitrogen-doped graphene quantum dots from oxidized debris of
graphene oxide. J Mater Chem B 2013;1:39–42.
226. Krishna AS, Radhakumary C, Sreenivasan K. Detection and imaging of fatty plaques in
blood vessels using functionalized carbon dots. Anal Methods 2015;7:9482–8.
227. Wang F, Xie Z, Zhang H, Liu CY, Zhang YG. Highly luminescent organosilane-
functionalized carbon dots. Adv Funct Mater 2011;21:1027–31.
228. Joshi PN, Mathias A, Mishra A. Synthesis of eco-friendly fluorescent carbon dots and
their biomedical and environmental applications.Mater Technol2018;33:672–80.
https://doi.org/10.1080/10667857.2018.1492683.
229. Monte SS, Andrade SIE, Lima MB, Araujo MCU. Synthesis of highly fluorescent carbon
dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral
supplements. J Pharm Anal 2019;9:209–16.
330. Zhou M, Zhou Z, Gong A, Zhang Y, Li Q. Synthesis of highly photoluminescent carbon
dots via citric acid and Tris for iron(III) ions sensors and bioimaging. Talanta.
2015;143:107–13.
331. Che Y, Pang H, Li H, Yang L, Fu X, Liu S, et al. Microwave-assisted fabrication of
copper-functionalized carbon quantum dots for sensitive detection of histidine. Talanta
2019;196:442–8.
332. Sui Y, Wu L, Zhong S, Liu Q. Carbon quantum dots/TiO2 nanosheets with dominant
(001) facets for enhanced photocatalytic hydrogen evolution. Appl Surf Sci 2019; 480:
810–6.
333. Azizi B, Farhadi K, Samadi N. Functionalized carbon dots from zein biopolymer as a
sensitive and selective fluorescent probe for determination of sumatriptan. Microchem J
2019;146:965–73.
334. Yang P, Zhu Z, Chen M, Chen W, Zhou X. Microwave-assisted synthesis of xylan derived
carbon quantum dots for tetracycline sensing. Opt Mater (Amst) 2018; 85:329–36.
335. Azizi B, Farhadi K, Samadi N. Functionalized carbon dots from zein biopolymer as a
sensitive and selective fluorescent probe for determination of sumatriptan. Microchem J
2019;146 :965–73.
336. Wang Q, Wang G, Liang X, Dong X, Zhang X. Supporting carbon quantum dots on
NH2-MIL-125 for enhanced photocatalytic degradation of organic pollutants under a
broad-spectrum irradiation. Appl Surf Sci 2019;467–468:320–7.
337. Pan X, Zhang Y, Sun X, Pan W, Wang J. A green emissive carbon-dotbased sensor with
diverse responsive manners for multi-mode sensing. Analyst2018;143:5812–21.

338. Sun Y, Wang X, Wang C, Tong D, Wu Q, Jiang K, Jiang Y, Wang C, Yang M. Red
emitting and highly stable carbon dots with dual response to pH values and ferric ions.
Microchim Acta 2018; 185:83.
339. Zhang J, Yan J, Wang Y, Zhang Y. One-step hydrothermal approach to synthesis carbon
dots from d-sorbitol for detection of iron(III) and cell imaging. J NanosciNanotechnol
2018;18 :4457–63.
340. Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X. Fluorescent probes for “of-
on” highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon
dots. Talanta 2016; 152:288–300.
341. Chen J, Liu J, Li J, Xu L, Qiao Y. One-pot synthesis of nitrogen and sulfur co-doped
carbon dots and its application for sensor and multicolor cellular imaging. J Colloid
Interface Sci 2017; 485:167–74.
342. Chen Z, Wang J, Miao H, Wang L, Wu S, Yang X. Fluorescent carbon dots derived from
lactose for assaying folic acid. Sci China Chem 2015;59:487–92.
343. Li J Y, Liu Y, Shu QW, Liang JM, Zhang F, Chen XP, Deng XY, Swihart MT, Tan KJ.
One-pot hydrothermal synthesis of carbon dots with efcient up- and down-converted
photoluminescence for the sensitive detection of morin in a dual-readout assay.
Langmuir 2017;33:1043–50.
344. Bhattacharya S, Sarkar R, Chakraborty B, Porgador A, Jelinek R. Nitric oxide sensing
through azo-dye formation on carbon dots. ACS Sen. 2017;2:1215–24.
345. Qin Z, Wang W, Zhan X, Du X, Zhang Q, Zhang R, Li K, Li J, Xu W. One pot synthesis
of dual carbon dots using only an N and S coexisted dopant for fluorescence detection of
Ag+. Spectrochim Acta A Mol BiomolSpectrosc 2019;5:162–71.
346. Lan J, Liu C, Gao M, Huang C. An efficient solid-state synthesis of fluorescent surface
carboxylated carbon dots derived from C60 as a label-free probe for iron ions in living
cells. Talanta 2015;144:93–7.
347. Xu Q, Su R, Chen Y, Sreenivasan ST, Li N, Zheng X, Zhu J, Pan H, Li W, Xu C, Xia Z,
Dai L. Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-
High Quantum Yield Photoluminescence. J Colloid Interface Sci. 2018;1(4):1886–9.
348. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX. Fabrication of highly fuorescent
graphene quantum dots using l-glutamic acid for in vitro/ in vivo imaging and sensing. J
Mater Chem C 2013;1(31):4676–84.
349. Yang J, He X, Chen L, Zhang Y. The selective detection of galactose based on boronic
acid functionalized fluorescent carbon dots. Anal Methods. 2016;8:8345–51.
350. Zhou L, Lin Y, Huang Z, Ren J, Qu X. Carbon nanodots as fuorescence probes for rapid,
sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem
Commun 2012;48:1147–9.
351. Devi P, Thakur A, Chopra S, Kaur N, Kumar P, Singh N, Kumar M, Math SP, Nayak
MK. Ultrasensitive and selective sensing of selenium using nitrogen-rich ligand
interfaced carbon quantum dots. ACS Appl Mater Interfaces. 2017;9:13448–56.
352. Miao X, Yan X, Qu D, Li D, Tao F, Sun Z. Red emissive sulfur, nitrogen codoped carbon
dots and their application in ion detection and theranostics. ACS Appl Mater Interfaces
2017;9:18549–56.
353. Kaur N, Mehta A, Mishra A, Chaudhary S, Rawat M, Basu S. Amphiphilic carbon dots
derived by cationic surfactant for selective and sensitive detection of metal ions. Mater
Sci Eng C Mater Biol Appl 2018;95:72–7.
356. Qian Z, Shan X, Chai L, Ma J, Chen J, Feng H. Si-doped carbon quantum dots: a facile
and general preparation strategy, bioimaging application, and multifunctional sensor.
ACS Appl Mater Interfaces. 2014;6:6797–805.

357. Kaur N, Mehta A, Mishra A, Chaudhary S, Rawat M, Basu S. Amphiphilic carbon dots
derived by cationic surfactant for selective and sensitive detection of metal ions. Mater
Sci Eng C Mater Biol Appl 2018;95:72–7.
358. Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H. B-doped carbon quantum dots as a
sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst
2014;139:2322–5.
359. Jiang Y, Wang Z, Dai Z. Preparation of silicon–carbon-based dots at dopamine and its
application in intracellular Ag+ detection and cell imaging. ACS Appl Mater Interfaces.
2016; 8:3644–50.
360. Jijie R, Barras A, Bouckaert J, Dumitrascu N, Szunerits S, Boukherroub R. Enhanced
antibacterial activity of carbon dots functionalized with ampicillin combined with visible
light triggered photodynamic effects. Colloid Surface B. 2018; 170: 347-54.
361. Liu JJ, Lu SY, Tang QL, Zhang K, Yu WX, Sun HC, et al. One-step hydrothermal
synthesis of photoluminescent carbon nanodots with selective antibacterial activity
against Porphyromonas gingivalis. Nanoscale. 2017; 9: 7135-42.
362. Xiang Y, Mao C, Liu X, Cui Z, Jing D, Yang X, et al. Rapid and Superior Bacteria
Killing of Carbon Quantum Dots/ZnO Decorated Injectable Folic Acid-Conjugated PDA
Hydrogel through Dual-Light Triggered ROS and Membrane Permeability. Small. 2019;
15:e1900322.
363. Dong X, Moyer MM, Yang F, Sun YP, Yang L. Carbon Dots' Antiviral Functions
Against Noroviruses. Sci Rep 2017; 7: 519.
364. Yan YY, Kuang WC, Shi LJ, Ye XL, Yang YH, Xie XB, et al. Carbon quantum dot-
decorated TiO2 for fast and sustainable antibacterial properties under visible-light. J
Alloy Compd 2019; 777: 234-43.
365. Yang J, Zhang X, Ma Y-H, Gao G, Chen X, Jia H-R, et al. Carbon Dot-Based Platform
for Simultaneous Bacterial Distinguishment and Antibacterial Applications. Acs Appl
Mater Inter 2016; 8: 32170-81.
366. Yang J. One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence
emission: Fast Gram-type identification and selective Gram-positive bacterial inactiva-
tion. Carbon 2019; 146: 827-39.
367. Kovacova M, Markovic ZM, Humpolicek P, Micusik M, Svajdlenkova A, et al. Carbon
Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic
and Antibacterial Agents. Acs Biomater Sci Eng. 2018; 4: 3983-93.
368. Sidhu JS, et al. The Photochemical Degradation of Bacterial Cell Wall Using Penicillin-
Based Carbon Dots: Weapons Against Multi-Drug Resistant (MDR) Strains. Chemistry-
select. 2017; 2: 9277-83.
369. Li YJ, Harroun SG, Su YC, Huang CF, Unnikrishnan B, Lin HJ, et al. Synthesis of Self-
Assembled Spermidine-Carbon Quantum Dots Effective against Multidrug-Resistant
Bacteria. Adv Healthc Mater 2016; 5: 2545-54.
370. Zhang JT, Liu X, Wang XY, Mu LL, Yuan MM, Liu BK, et al. Carbon dots-decorated
Na2W4O13 composite with WO3 for highly efficient photocatalytic antibacterial
activity. J Hazard Mater 2018; 359: 1-8.
371. Dong XL, Al Awak M, Tomlinson N, Tang YG, Sun YP, Yang LJ. Antibacterial effects
of carbon dots in combination with other antimicrobial reagents. Plos One. 2017; 12:
0185324.
372. Du T, Liang JG, Dong N, Liu L, Fang LR, Xiao SB, et al. Carbon dots as inhibitors of
virus by activation of type I interferon response. Carbon 2016;110: 278-85.




373. Hou P, Yang T, Liu H, Li YF, Huang CZ. An active structure preservation method for
developing functional graphitic carbon dots as an effective antibacterial agent and a
sensitive pH and Al(III) nanosensor. Nanoscale. 2017; 9: 17334-41.
374. Abu Rabe DI, Al Awak MM, Yang F, Okonjo PA, Dong XL, Teisl LR, et al. The
dominant role of surface functionalization in carbon dots' photo-activated antibacterial
activity. Int J Nanomed 2019; 14: 2655-65.
375. Huang SM, Gu JJ, Ye J, Fang B, Wan SF, Wang CY, et al. Benzoxazine monomer
derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid
Interf Sci 2019; 542: 198-206.
376. Priyadarshini E, Rawat K, Prasad T, Bohidar HB. Antifungal efficacy of Au@ carbon
dots nanoconjugates against opportunistic fungal pathogen, Candida albicans. Colloid
Surface B 2018; 163: 355-61.
377. Li H, Huang J, Song YX, Zhang ML, Wang HB, Lu F, et al. Degradable Carbon Dots
with Broad-Spectrum Antibacterial Activity. Acs Appl Mater Inter 2018; 10: 26936-46.











REFERENCES
1. Mishra V, Patil A, Thakur S, Kesharwani P. Carbon dots: emerging theranostic nanoarchitectures. Drug Discov Today 2018;23:1219-32.
2. Xiao C, Lai L, Zhang L, et al. Spectroscopic and Isothermal Titration Calorimetry Studies of Binding Interactions Between Carbon Nanodots and Serum Albumins. J Solution Chem 2018; 47:1438-48.
3. Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G. Polyamine-functionalized carbon quantum dots for chemical sensing. Anal Chem.2012;84:6220–4.
4. Peng H, Zhang L, Kjällman THM, Soeller C. DNA hybridization detection with blue luminescent quantum dots and dye-labeled single-stranded DNA. Communication. 2007;129:3048–9.
5. Zhang Y, Cui P, Zhang F, Feng X, Wang Y, Yang Y, Liu X. Fluorescent probes for “off-on” highly sensitive detection of Hg2+ and l-cysteine based on nitrogen-doped carbon dots. Talanta. 2016; 152:288–300.
6. Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol. 2004;22:969–76.
7. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, Liu Y, Wang H, Wang W, Liu W. Nanocarrier for gene delivery and bioimaging based on carbon dots with PEI passivation enhanced fluorescence. Biomaterials. 2012;33:3604–13.
8. Sharma S, Singh N, Nepovimova E, et al. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2020; 38: 1822-37.
9. Tao H, Yang K, Ma Z, Wan J, Zhang Y, Kang Z, Liu Z. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 2012;8:281–90.
10. Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B. 2017;5(45):8904–24.
11. Chen F, Gao W, Qiu X, Zhang H, Liu L, Liao P, Fu W, Luo Y. Graphene quantum dots in biomedical applications: recent advances and future challenges. Front LabMed.2017;1:192–9.
12. Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, et al. Carbon dots: Applications in bioimaging and theranostics. Int J Pharm 2019; 564:308-17.
13. S. Zhu, et al., The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res 2015;8:355–381.
14. M. Bacon, S. J. Bradley and T. Nann, Graphene quantum dots, Part. Part. Syst. Charact 2014;31: 415–428.
15. S. Zhu, et al., Strongly green-photoluminescent graphene quantum dots for bioimaging applications, Chem. Commun 2011;47: 6858–6860.
16. Tao S, Zhu S, Feng T, Xia C, Song Y, Bai Y. The polymeric characteristics and photoluminescence mechanism in polymer carbon dots: a review. Mater Today Chem 2017; 6:13–25.
17. Sun X, Lei Y. Fluorescent carbon dots and their sensing applications. Trends Anal Chem 2017; 89:163–80.
18. Shamsipur M, Barati A, Karami S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon 2017; 124:429–72.
19. Arora N, Sharma NN. Arc discharge synthesis of carbon nanotubes: comprehensive review. Diamond Relat Mater 2014; 50:135–50.
20. Schmidt-Mende L, Bach U, Humphry-Baker R, Horiuchi T, Miura H, Ito S, Uchida S, Grätzel M. Organic dye for highly efficient solid-state dye -sensitized solar cells. Adv Mater 2005;17:813–815.
21. Shimizu KT, Neuhauser RG, Leatherdale CA, Empedocles SA, Woo W, Bawendi MG. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys Rev B 2001; 63:205316.
22. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 2001; 19:63.
23. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 2005;4:435.
24. P. G. Luo, et al., Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv 2014; 4(21):10791–10807.
25. Guo Y, Wang Z, Shao H, Jiang X. Hydrothermal synthesis of highly fluorescent carbon
nanoparticles from sodium citrate and their use for the detection of mercury ions.
Carbon 2013;52:583–9.
26. F.Yuan, et al., Shining carbon dots: synthesis and biomedical and optoelectronic
Applications. Nano Today 2016;11(5): 565–586.
27. Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen
Z, Li Z, Wu M. Cutting sp2 clusters in graphene sheets into colloidal graphene
quantum dots with strong green fluorescence. J. Mater. Chem.2012;22: 3314-3318.
28. Jie G, Huang H, Sun X, Zhu J-J. Electrochemiluminescence of CdSe quantum dots.
for immune sensing of human prealbumin. Biosens. Bioelectron.2008;23:1896-1899.
29. Liu X, Jiang H, Lei J, Ju H. Anodic electrochemiluminescence of CdTe quantum dots and its energy transfer for detection of catechol derivatives. Anal chem 2007; 79: 8055-8060.
30. G. A. M. Hutton, B. C. M. Martindale, and E. Reisner. Carbon dots as photosensitisers for solar-driven catalysis. Chemical Society Reviews 2017;46: 6111–6123.
31. J. Wang, J. Qiu. A review of carbon dots in biological applications. Journal of Materials Science. 2016;51:4728–4738.
32. S.Y.Lim,W. Shen, and Z. Gao. Carbon quantum dots and their applications. Chemical Society Reviews 2015;44:362–381.
33. Lin H, Ding L, Zhang B, Huang J. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid. R Soc Open Sci 2018;5:2054–5703.
34. Shan X, Chai L, Ma J, Qian Z, Chen J, Feng H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 2014;139:2322–5.
35. Guo X, Zhu Y, Zhou L, Zhang L, You Y, Zhang H, Hao J. A simple and green approach to prepare carbon dots with pH-dependent fluorescence for patterning and bioimaging. RSC Adv 2018;8:38091–9.
36. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX. Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/ in vivo imaging and sensing. J Mater Chem C 2013;1:4676–84.
37. X. T. Zheng, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 2015;11:1620–1636.
38. Xu X, Ray R, Gu Y, Ploehn H. J., Gearheart L, Raker K, Scrivens, W. A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J Am Chem Soc 2004; 126:12736?12737.
39. Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Meziani M J, Harruff, BA, Wang, X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca M, Xie SY. Quantum- Sized Carbon Dots for Bright and Colorful Photoluminescence. J Am Chem Soc 2006;128: 7756?7757.
40. Li H, Kang Z, Liu Y, Lee ST. Carbon Nanodots: Synthesis, Properties and Applications. J Mater Chem 2012; 22: 24230?24253.
41. Zuo J, Jiang T, Zhao X, Xiong, S. Zhu Z. Preparation and application of fluorescent carbon dots. Journal of Nanomaterials 2015;Article ID 787862.
42. Zhou J, Booker C, Li R, Zhou X, Sham T, Sun X, Ding Z. An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J Am Chem Soc 2007; 129:744?745.
43. Zheng L, Chi Y, Dong Y, Lin J, Wang B. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. Journal of American Chemical Society 2009;131:4564-4565.
44. Li H, He X, Kang Z, et al. Water?Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie, 2010;49: 4430–4434.
45. Ray S, Saha A, Jana NR, et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 2009; 113:18546–18551.
46. J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun and Z. Ding. J Am Chem Soc 2007;129:744.
47. D. B. Shinde and V. K. Pillai, Chem. Eur. J 2012;18:12522.
48. Bao L, Zhang L, Tian ZQ, Zhang L, Liu C, Lin Y, Qi B. Adv. Mater., 2011; 23:5801.
49. Zheng L, Chi Y, Dong Y, Lin J, Wang B. J Am Chem Soc 2009; 131: 4564.
50. Q.L. Zhao, Z.L. Zhang, B.H. Huang, J. Peng, M. Zhang and D.W. Pang. Chem. Commun 2008; 5116. DOI: 10.1039/b812420e.
51. Nakamura M, Canevari TC, Cincotto FH, et al. High performance electrochemical sensors for dopamine and epinephrine using nanocrystalline carbon quantum dots obtained under controlled chronoamperometric conditions. Electrochim Acta 2016;209: 464–470.
52. Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 2009; 21:5563–5565.
53. Xiao J, Liu P, Wang CX, Yang GW. External field-assisted laser ablation in liquid: an efficient strategy for nanocrystal synthesis and nanostructure assembly. Diamond Relat Mater 2017; 87:140–220.
54. Y.P. Sun, B. Zhou, Y. Lin et al. Quantum-sized carbon dots for bright and Colorful photoluminescence. Journal of American Chemical Society 2006;128:7756-7757.
55. V. Thongpool, P. Asanithi, and P. Limsuwan. Synthesis of carbon particles using laser ablation in ethanol. Procedia Engineering 2012;32: 1054–1060.
56. C. Doñate - Buendia, R. Torres-Mendieta, A. Pyatenko,E. Falomir, M. Fernández- Alonso, and G. Mínguez-Vega. Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega 2018;3:2735–2742.
57. Li H, Kang Z, Liu Y, et al. Carbon nanodots: synthesis, properties and applications. J Mater Chem. 2012; 22:24230–24253.
58. Wang D, Wang Z, Zhan Q, et al. Facile and scalable preparation of fluorescent carbon dots for multifunctional applications. Engineering 2017; 3:402–408.
59. Wang Q, Huang X, Long Y, et al. Hollow luminescent carbon dots for drug delivery. Carbon 2013; 59:192–199.
60. Lu L, Zhu Y, Shi C, Pei YT. Large-scale synthesis of defect-selective graphene quantum dots by ultrasonic-assisted liquid-phase exfoliation. Carbon 2016;109:373–83.
61. Xu X, Ray R, Gu Y et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of American Chemical Society 2004 ;126:12736-12737.
62. M. Bottini, C. Balasubramanian, M. I. Dawson, A. Bergamaschi, S. Bellucci, and T. Mustelin. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. The Journal of Physical Chemistry B 2006;110:831–836.
63. S.Dey, A. Govindaraj, K. Biswas, and C. N. R. Rao. Luminescence properties of boron and nitrogen doped graphene quantum dots prepared from arc-discharge-generated doped graphene samples. Chemical Physics Letters 2014;595:203–208.
64. Yang S, Sun J, Li X, Zhou W, Wang, He, P, et al. Largescale fabrication of heavy doped carbon quantum dots with tunable photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014; 8660–8667.
65. Hu SL, Niu KY, Sun, J, Yang J, Zhao NQ, Du XW. One step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mate
Statistics
18 Views | Downloads
Citations
How to Cite
REDDY, M. R., & GUBBIYAPPA, K. S. (2021). Multi-functional Carbon Dots: A Systematic Overview: Multi-functional Carbon Dots: A Systematic Overview. International Journal of Applied Pharmaceutics, 13(4). https://doi.org/10.22159/ijap.2021v13i4.41002
Section
Review Article(s)