DEVELOPMENT OF CODI (CO-DRUG INTERACTION) SOFTWARE AS DRUGS PRESCRIPTION ANALYSIS

  • MUHAMAD RINALDHI TANDAH Pharmacy Department, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu, Indonesia
  • YUSRIADI Pharmacy Department, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu, Indonesia
  • ALWIYAH MUKADDAS Pharmacy Department, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu, Indonesia
  • KHUSNUL DIANA Pharmacy Department, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu, Indonesia
  • AHMAD ANGGARA SADEWA Pharmacy Department, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu, Indonesia

Abstract

Objective: This study intends to design software algorithms, which is called Co-Drug Interaction (CODI), that able to analyse drug interactions in prescription and recommendations for further correction by replacing active substances based on the E-book Drug Interaction Facts and provide drug information features.


Methods: The research used data collection and conversed into programming languages. Java language programme choosed to build the entire application as its considerable free of charge and recognizable interface to use. The reference book is also used to help in prescribing and evaluating the reliability and efficiency of the software.


Result: The evaluations were performed by analyzing 30 groups of medicine based on 2 diseases, which are hypertension and diabetes mellitus.


Conclusion: The algorithm design and evaluation are in accordance with the planned output.

Keywords: Drug prescription, Drug interaction, System information, Java language programme

References

1. Athira JI, Chaithanya KT, Joffey SJ, Kavitha SP, Sambath KR. A prospective study of drug-drug interactions and adverse drug reactions among stroke patients in a tertiary care hospital. Asian J Pharm Clin Res 2016;9:100-4.
2. Ubaka CM, Ekwe C, Isah A, Mukhtar AB, Ukwe CV. Students’ knowledge and risk of committing medication errors in two schools of pharmacy in Nigeria. Asian J Pharm Clin Res 2020;13:57-2.
3. Prajwal AT, Muddukrishna BS, Vasantharaju SG. Pharma 4.0–impact of the internet of things on health care. Int J Appl Pharm 2020;12:64-9.
4. Nurlaelah I, Mukaddas A, Faustine I. Kajian interaksi obat pada pengobatan diabetes melitus dengan hipertensi di Instalasi Rawat Jalan RSUD Undata periode Maret-Juni Tahun 2014. Galen J Pharm 2015;1:35–41.
5. Mahamudu YS, Citraningtyas G. Kajian potensi interaksi obat antihipertensi pada pasien hipertensi primer di Instalasi Rawat Jalan RSUD Luwuk periode Januari-Maret 2016. Pharmacon J Ilm Farm 2017;6:1–9.
6. Handayani K. Analisis potensi interaksi obat diabetes melitus pada resep obat pasien rawat jalan di RSAL Dr. Mintohardjo. Jakarta: UIN Repository; 2015.
7. Kadir A. Buku pertama belajar pemrograman Java untuk pemula. first ed. Yogyakarta: PT. Buku Seru; 2014.
8. Tatro DS, Olin BR. Drug interaction facts: facts and comparisons. St. Louis, MO: J. B. Lippincott Co; 1992.
9. Sari SP, Darajat AF, Nursanti B. Drug interactions among patients with hypertension taking angiotensin converting enzyme inhibitors in an Indonesian hospital. Int J Appl Pharm 2018;10(Special Issue 1):138-41.
10. Patil JP, Patil SV, Bhore P. Prescription analysis of hypertensive patients and awareness among physician regarding antihypertensive drug. Int J Curr Pharm Sci 2020;12:124-8.
11. Londhe SP, Joseph AB, John JO, Philip KI, Philip LI. To identify, evaluate, and analyze possible drug-drug interactions in patients diagnosed as type 2 diabetes mellitus with hypertension in a tertiary care teaching hospital. Asian J Pharm Clin Res 2015;8:169-74.
Statistics
5 Views | 16 Downloads
Citations
How to Cite
TANDAH, M. R., YUSRIADI, MUKADDAS, A., DIANA, K., & SADEWA, A. A. (2021). DEVELOPMENT OF CODI (CO-DRUG INTERACTION) SOFTWARE AS DRUGS PRESCRIPTION ANALYSIS. International Journal of Applied Pharmaceutics, 13(2), 18-23. https://doi.org/10.22159/ijap.2021.v13s2.04
Section
Original Article(s)