IN SILICO INVESTIGATION OF XANTHONE DERIVATIVE POTENCY IN INHIBITING CARBONIC ANHYDRASE II (CA II) USING MOLECULAR DOCKING AND MOLECULAR DYNAMICS (MD) SIMULATION

Authors

  • REGINA KATELIA Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia https://orcid.org/0000-0002-8258-9167
  • MUHAMMAD MIFTAH JAUHAR Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia https://orcid.org/0000-0002-5826-5904
  • PUTRI HAWA SYAIFIE Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia https://orcid.org/0000-0001-8566-7960
  • DWI WAHYU NUGROHO Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia https://orcid.org/0000-0002-7020-8582
  • DONNY RAMADHAN Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Jawa Barat, 16911, Indonesia https://orcid.org/0000-0001-6556-3160
  • ADZANI GAISANI ARDA Nano Center Indonesia, Jl. PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia https://orcid.org/0000-0002-2674-6295
  • ETIK MARDLIYATI Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Cibinong, Bogor, Jawa Barat, 16911, Indonesia
  • ISA ANSHORI Biomedical Engineering Department, School of Electrical Engineering and Informatics, Bandung Institute of Technology, Bandung, Indonesia

DOI:

https://doi.org/10.22159/ijap.2022v14i5.45388

Keywords:

Carbonic anhydrase (CA) II, hypertension, xanthone, molecular docking, molecular dynamics

Abstract

Objective: Hypertension is the leading contributor to all-cause death and disability worldwide. One of the most well-known first-line antihypertensive drugs is chlorthalidone which treats hypertension through carbonic anhydrase (CA) II inhibition. However, due to the high number of cases of hypertension, a more potent medication is still needed. Xanthone is a potential candidate for the compound group for its potency in inhibiting CA II. Therefore, this research aims to evaluate around 500 xanthones’ potency as a better oral antihypertensive drug than chlorthalidone

Methods: 507 xanthones were analyzed for their potency using in silico method. Xanthone’s structures were retrieved from the PubChem website or built using Avogadro software while the CA II receptor was retrieved from The RCSB website. Then molecular docking, ADME evaluation, and toxicity test were evaluated from selected ligands. Finally, a molecular dynamics simulation was conducted to evaluate the stability of the potential ligand as the inhibitor of CA II protein.

Results: This research found that globulixanthone c is considered to be a better CA II inhibitor compared to chlorthalidone. It is due to its lower binding affinity compared to chlorthalidone and its stable binding to CA II’s important inhibition sites with low fluctuation. It also has the potential to be consumed orally because it fulfills all of Lipinski's rule of five standards and its toxicity is on the moderate level.

Conclusion: Globulixanthone c, a type of prenylated xanthones group showed the best potential activity as the inhibitor of CA II protein to treat hypertension among other xanthones.

Downloads

Download data is not yet available.

References

Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A, Whelton PK. Hypertension. Nat Rev Dis Primers. 2018 Mar 22;4:18014. doi: 10.1038/nrdp.2018.14. PMID: 29565029.

Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003 May 21;289(19):2560-72. doi: 10.1001/jama.289.19.2560. PMID: 12748199.

World Health Organization. Hypertension [Internet]; 25 Aug 2021 Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension. [Last accessed on 14 May 2022]

World Health Organization. Blood Pressure/Hypertension. [Internet]. Available from: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/3155.

[Last accessed on 14 May 2022]

Demir Y. The behaviour of some antihypertension drugs on human serum paraoxonase-1: an important protector enzyme against atherosclerosis. J Pharm Pharmacol. 2019 Oct;71(10):1576-1583. doi: 10.1111/jphp.13144. PMID: 31347707.

Demir Y. Naphthoquinones, benzoquinones, and anthraquinones: Molecular docking, ADME and inhibition studies on human serum paraoxonase-1 associated with cardiovascular diseases. Drug Dev Res. 2020 Aug;81(5):628-636. doi: 10.1002/ddr.21667. PMID: 32232985.

Wright JM, Musini VM, Gill R. First-line drugs for hypertension. Cochrane Database Syst Rev. 2018 Apr 18;4(4):CD001841. doi: 10.1002/14651858.CD001841.pub3. PMID: 29667175.

Swenson ER. New insights into carbonic anhydrase inhibition, vasodilation, and treatment of hypertensive-related diseases. Curr Hypertens Rep. 2014 Sep;16(9):467. doi: 10.1007/s11906-014-0467-3. PMID: 25079851.

Hoff E, Zou D, Schiza S, Demir Y, Grote L, Bouloukaki I, Beydemir Ş, Eskandari D, Stenlöf K, Hedner J. Carbonic anhydrase, obstructive sleep apnea and hypertension: Effects of intervention. J Sleep Res. 2020 Apr;29(2):e12956. doi: 10.1111/jsr.12956. PMID: 31808986.

Sever B, Türkeş C, Altıntop MD, Demir Y, Beydemir Ş. Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. Int J Biol Macromol. 2020 Nov 15;163:1970-1988. doi: 10.1016/j.ijbiomac.2020.09.043. PMID: 32931834.

Kaya Y, Erçağ A, Zorlu Y, Demir Y, Gülçin İ. New Pd(II) complexes of the bisthiocarbohydrazones derived from isatin and disubstituted salicylaldehydes: Synthesis, characterization, crystal structures and inhibitory properties against some metabolic enzymes. J Biol Inorg Chem. 2022 Mar;27(2):271-281. doi: 10.1007/s00775-022-01932-9. PMID: 35175415.

Çağlayan C, Taslimi P, Demir Y, Küçükler S, Kandemir FM, Gulçin İ. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J Biochem Mol Toxicol. 2019 Oct;33(10):e22381. doi: 10.1002/jbt.22381. PMID: 31454121.

Carter BL, Einhorn PT, Brands M, He J, Cutler JA, Whelton PK, Bakris GL, Brancati FL, Cushman WC, Oparil S, Wright JT Jr; Working Group from the National Heart, Lung, and Blood Institute. Thiazide-induced dysglycemia: call for research from a working group from the national heart, lung, and blood institute. Hypertension. 2008 Jul;52(1):30-6. doi: 10.1161/HYPERTENSIONAHA.108.114389.

Hripcsak G, Suchard MA, Shea S, Chen R, You SC, Pratt N, Madigan D, Krumholz HM, Ryan PB, Schuemie MJ. Comparison of Cardiovascular and Safety Outcomes of Chlorthalidone vs Hydrochlorothiazide to Treat Hypertension. JAMA Intern Med. 2020 Apr 1;180(4):542-551. doi: 10.1001/jamainternmed.2019.7454. PMID: 32065600.

Vieira LM, Kijjoa A. Naturally-occurring xanthones: recent developments. Curr Med Chem. 2005;12(21):2413-46. doi: 10.2174/092986705774370682. PMID: 16250871.

Bedi P, Gupta R, Pramanik T. Synthesis and Biological Properties of Pharmaceutically Important Xanthones and Benzoxanthone Analogs: A Brief Review. Asian J Pharm Clin Res. 2018 Feb;11(20):12-20. doi: 10.22159/ajpcr.2018.v11i2.22426.

Chansakaow S, Sirisa-Ard P, Khonkarn R. Preparation, Characterization, and Antioxidant Activity of Xanthone-Loaded Making (Hodgsonia heteroclite) Microemulsions. Int J Pharm Pharm Sci. 2017;9(3):262-267. doi : 10.22159/ijpps.2017v9i3.16584

Abuzaid AS, Sukandar EY, Kurniati NF, Adnyana IK. Prevention of Obesity and Development of Metabolic Syndrome by Mangosteen (Garcinia mangostana L) Pericarp Ethanolic Extract in Male Wistar Rats Fed With High-Fat Diet. Int J Pharm Pharm Sci. 2018;8(5):372-378.

Saleem M, Hareem S, Khan A, Naheed S, Raza M, Hussain R, Imran M, Choudhary MI. Dual inhibitors of urease and carbonic anhydrase-II from Iris species. Pure Appl. Chem. 2019 July 18;91(10):1695–1707. doi: 10.1515/pac-2019-0407.

Davis RA, Hofmann A, Osman A, Hall RA, Mühlschlegel FA, Vullo D, Innocenti A, Supuran CT, Poulsen SA. Natural product-based phenols as novel probes for mycobacterial and fungal carbonic anhydrases. J Med Chem. 2011 Mar 24;54(6):1682-92. doi: 10.1021/jm1013242. PMID: 21332115.

Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018 Apr 28;23(5):1038. doi: 10.3390/molecules23051038. PMID: 29710787

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010 Jan 30;31(2):455-61. doi: 10.1002/jcc.21334. PMID: 19499576

Berendsen HJ, Van der Spoel D, Van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995;91(1–3):43–56. Doi: 10.1016/0010-4655(95)00042-E.

Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the Rule of 5 and drugability. Adv Drug Deliv Rev. 2016 Jun 1;101:89-98. doi: 10.1016/j.addr.2016.05.007. PMID: 27182629

Sever B, Altıntop M, Demir Y, Türkeş C, Özbaş K, Çiftçi G, Beydemir Ş, Özdemir A. A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity. Open Chemistry. 2021;19(1): 347-357. doi: 10.1515/chem-2021-0032.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26. doi: 10.1016/s0169-409x(00)00129-0. PMID: 11259830.

Coimbra JTS, Feghali R, Ribeiro RP, Ramos MJ, Fernandes PA. The importance of intramolecular hydrogen bonds on the translocation of the small drug piracetam through a lipid bilayer. RSC Adv. 2021 Jan 4;11(2):899-908.

Sangkaew A, Samritsakulchai N, Sanachai K, Rungrotmongkol T, Chavasiri W, Yompakdee C. Two flavonoid-based compounds from Murraya paniculata as novel human carbonic anhydrase isozyme II inhibitors detected by a resazurin yeast-based assay. J Microbiol Biotechnol. 2020 Apr 28;30(4):552-560. doi: 10.4014/jmb.1910.10037. PMID: 31893608.

Ghorab MM, Alsaid MS, Ceruso M, Nissan YM, Supuran CT. Carbonic anhydrase inhibitors: Synthesis, molecular docking, cytotoxic and inhibition of the human carbonic anhydrase isoforms I, II, IX, XII with novel benzenesulfonamides incorporating pyrrole, pyrrolopyrimidine and fused pyrrolopyrimidine moieties. Bioorg Med Chem. 2014 Jul 15;22(14):3684-95. doi: 10.1016/j.bmc.2014.05.009. PMID: 24878360.

Abuelizz HA, Dib RE, Marzouk M, Anouar EH, A Maklad Y, N Attia H, Al-Salahi R. Molecular Docking and Anticonvulsant Activity of Newly Synthesized Quinazoline Derivatives. Molecules. 2017 Jun 30;22(7):1094. doi: 10.3390/molecules22071094. PMID: 28665338

De Simone G, Scozzafava A, Supuran CT. Which carbonic anhydrases are targeted by the antiepileptic sulfonamides and sulfamates? Chem Biol Drug Des. 2009 Sep;74(3):317-21. doi: 10.1111/j.1747-0285.2009.00857.x. PMID: 19703035.

Ferreira de Freitas R, Schapira M. A systematic analysis of atomic protein-ligand interactions in the PDB. Medchemcomm. 2017 Oct 1;8(10):1970-1981. doi: 10.1039/c7md00381a. PMID: 29308120.

Martínez L. Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One. 2015 Mar 27;10(3):e0119264. doi: 10.1371/journal.pone.0119264. PMID: 25816325

Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018 Apr 28;23(5):1038. doi: 10.3390/molecules23051038. PMID: 29710787.

Cheng X, Ivanov I. Molecular dynamics. Methods Mol Biol. 2012;929:243-85. doi: 10.1007/978-1-62703-050-2_11. PMID: 23007433..

Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, Pietrokovski S. Network analysis of protein structures identifies functional residues. J Mol Biol. 2004 Dec 3;344(4):1135-46. doi: 10.1016/j.jmb.2004.10.055. PMID: 15544817.

Ma B, Elkayam T, Wolfson H, Nussinov R. Protein-protein interactions: structurally

Natl Acad Sci U S A. 2003 May 13;100(10):5772-7. doi: 10.1073/pnas.1030237100. PMID: 12730379.

Published

19-07-2022

How to Cite

KATELIA, R., JAUHAR, M. M., SYAIFIE, P. H., NUGROHO, D. W., RAMADHAN, D., ARDA, A. G., MARDLIYATI, E., & ANSHORI, I. (2022). IN SILICO INVESTIGATION OF XANTHONE DERIVATIVE POTENCY IN INHIBITING CARBONIC ANHYDRASE II (CA II) USING MOLECULAR DOCKING AND MOLECULAR DYNAMICS (MD) SIMULATION. International Journal of Applied Pharmaceutics, 14(5). https://doi.org/10.22159/ijap.2022v14i5.45388

Issue

Section

Original Article(s)