@article{MURALIKRISHNAN_KUBAVAT_VASAVA_JUPUDI_BIJU_2023, title={INVESTIGATION OF ANTI-SARS COV-2 ACTIVITY OF SOME TETRAHYDRO CURCUMIN DERIVATIVES: AN IN SILICO STUDY}, volume={15}, url={https://journals.innovareacademics.in/index.php/ijap/article/view/46288}, DOI={10.22159/ijap.2023v15i1.46288}, abstractNote={<p><strong>Objective</strong>: In the current study, an <em>in silico </em>approach has been utilized to investigate the anti-SARS CoV 2 activity of some derivatives of Tetrahydro curcumin (THC), a curcumin metabolite.</p> <p><strong>Methods</strong>: BioVia Draw 2017 was used to design 168 THC derivatives. All of the derivatives were docked using Maestro Schrodinger programme. Depending on the docking score, the ADME, drug-likeness, and toxicity prediction of a few THC derivatives were conducted.</p> <p><strong>Results</strong>: 168 THC derivatives were designed. 14 derivatives exhibited a better binding score than Remdesivir. All 14 derivatives’ pharmacokinetic characteristics were discovered to be within the acceptable range. Lipinski’s rule of five was violated by all derivatives, including the reference drug, yet they all stayed within the recommended range. The greatest docking score among the 14 derivatives was displayed by Structure 21. A study on molecular dynamic (MD) stimulation showed that the protein-ligand complex was relatively stable. Toxicity prediction showed that 14 derivatives were non-hepatotoxic, non-cytotoxic, immunotoxic (except S21), non-mutagenic (except S31) and half of the developed structures were carcinogenic, while the other half, including the standard drug, was non-carcinogenic.</p> <p><strong>Conclusion</strong>: Among 168 THC derivatives, 14 derivatives exhibited better binding score than the reference drug. For all 14 derivatives, pharmacokinetic, drug-likeness, and toxicity prediction were found to be satisfactory. It was discovered that the protein-ligand complex was thermodynamically stable. All 14 compounds present exciting prospects for further <em>in vitro</em> and <em>in vivo</em> investigation.</p>}, number={1}, journal={International Journal of Applied Pharmaceutics}, author={MURALIKRISHNAN, AMRITA and KUBAVAT, JASMIN and VASAVA, MAHESH and JUPUDI, SRIKANTH and BIJU, NAMITHA}, year={2023}, month={Jan.}, pages={333–339} }