# Innovare Journal of Ayurvedic Sciences



Vol 4, Issue 4, 2016

ISSN- 2321-6832

Review Article

# PHARMACOGNOSTIC COMPARISON OF BACOPA MONNIERI, CYPERUS ROTUNDUS, AND EMBLICA OFFICINALIS

## PUSHPENDRA KUMAR JAIN\*, DEBAJYOTI DAS

Department of Pharmacy, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, India. Email: jainpk1443@gmail.com

Received: 21 July 2016, Revised and Accepted: 22 July 2016

#### ABSTRACT

In the last few decades, a curious thing has happened to Herbal medicines. Instead of being killed off by medical science and pharmaceutical chemistry, it has made come back. Herbal medicine has benefited from the objective analysis of the medical science, while fanciful and emotional claims for herbal cures have been thrown out, herbal treatments and plant medicine that works have been acknowledge. Moreover, herbal medicine has been found to have impressive credentials. Developed empirically by trial and error, many herbal treatments were nevertheless remarkably effective. In a recent survey estimated that 39% of all 520 new approved drugs in 1983-1994 were natural products or derived from natural products and 60-80% of antibacterial and anticancer drugs were derived from natural products. Medicinal plants play an important role in the development of potent therapeutic agents. Plant-derived drugs came into use in the modern medicine through the uses of plant material as an indigenous cure in folklore or traditional systems of medicine. *Bacopa monnieri*, Cyperus rotundus, and *Emblica officinalis* (Brahmi, Nagarmotha, Amla) have several chemical compounds have been isolated from these herbs which are useful in treating number of diseases such as diarrhea, vomiting, indigestion, antibacterial, antifungal, antiviral, hair growth, hair wash, antioxidant, anticonvulsant, analgesic, anti-allergic, antifungal, cardiac depressant, and cardio-tonic. These reported therapeutic activities are due to the presence of phytochemicals present in these Herbs. Even Ayurveda has recognizes the nutritional elements derived from foods and Rasayanas which help to optimize the availability of "essential nutrients" in the body.

**Keywords:** Bacopa monnieri, Cyperus rotundus, Emblica officinalis, Medicinal plants, Antibacterial, Cardio-tonic, Hair growth, Herbal plants, Ayurveda, Brahmi, Nagarmotha, Amla, Essential nutrients, Herbal cosmetics, Physico-chemical, Chemical constituents, Inorganic components, Phytoconstituent, Pharmacological and traditional properties.

## INTRODUCTION

Herbal drugs constitute only those traditional medicines which primarily use medicinal plant preparations for therapy. The earliest recorded evidence of their use in Indian, Chinese, Egyptian, Greek, Roman and Syrian texts dates back to about 5000 years. The classical Indian texts include Rigveda, Atharvaveda, Charak Samhita, and Sushruta Samhita. It is estimated that around 70,000 plant species, from lichens to towering trees, have been used at one time or another for the medical purposes [1]. Plant kingdom has played an initial role in the existence of living beings on this earth. Without them, animal's life would have been lifeless world of deserts. They fulfill important necessities of life-food, clothing, shelter, and host to many living beings. The history of herbal medicine is as old as human civilization [2].

Today there is demand of such formulations, which are not having side effects to them. Pure herbal cosmetics preparations are having some problems regarding their stability. Nowadays cosmetology is a well-defined science based on experiences gathered over centuries. The safety and efficacy of natural herbs could not find any suitable match, i.e., cannot be replaced by synthetics [3]. There is once again revival of preference for natural products. Diet, nutrition, exercise, yoga, and meditation, i.e., holistic approach is essential nowadays. Nowadays herbal extracts and powders are used in the preparation to increase beauty and attractiveness of the person. In the present work, we have selected three such herbal drugs which are namely Bacopa monnieri, Cyperus rotundus, and Emblica officinalis [4] as they have been used by the traditional tribal communities as medicines for treating various diseases. Many of the workers worked on these herbal drugs and reported their uses in different ways with their pharmacological properties and pharmacognostic properties [5]. According to pharmacopoeia, these drugs have their properties as shown in Table 1 [6].

## B. monnieri (Brahmi)

It is a glabrous, succulent, small, prostrate or creeping annual herb, found throughout India in wet and damp places. The name *B. monnieri* (Brahmi) is derived from the word "Brahma,", the mythical "creator" in the Hindu pantheon. Because the brain is the center for creative activity, any compound that improves the brain health is called *B. monnieri* (Brahmi), which also means "bringing knowledge of the supreme reality" in India [7].

The herb is from a family *Scrophulariaceae* and is a small creeping herb with numerous branches, small oblong leaves and light purple or small and white flowers, with four or five petals. It is found in wetlands throughout the Indian subcontinent in damp and marshy or sandy areas near streams in tropical regions. The genus Bacopa includes over 100 species of aquatic herbs distributed throughout the warmer regions of the world, apart from India, Nepal, Sri Lanka, China, Taiwan and Vietnam and is also found in Florida and other southern states of the USA. The entire plant is used medicinally [8].

## Taxonomical classification of B. monnieri

- Class: Dicotyledoneae
- Common names: Brahmi, Nira-brahmi, Jalabrahmi, Thyme-Leaved Gratiola
- Division: Anthophyta
- Family: Scrophulariaceae
- Genus: Bacopa
- Kingdom: Plantae
- Order: Scrophulariales
- Species: Monnieri

## Vernacular names of B. monnieri

- English: Thyme Leaved Gratiola
- Guajarati: Neerbrahmi, Bamanevari
- Hindi: Mandukaparni
- · Malayalam: Brahmi

Marathi: Jalnam, Brahmi, Brahmi

Oriya: BrahmiPunjabi: BrahmibutiSanskrit: Sarasvati

• Telugu: Sambarenu, Sambrani

Urdu: Brahmi

# Plant morphological description of B. monnieri [7,9]

#### Flowers

Pale blue or pinkish white, nearly regular, solitary axillary, 0.6-3 cm in length, usually longer than leaves with two linear bracteoles, pedicel slender, calyx glabrous, deeply 5 partite, corolla gamopetalous, stamens 4, didynamous, anthers 2 celled, pistil bicarpellary, syncarpous, ovary two chambered with many ovules, style dilated towards the top, and stigma bilobed (Fig. 1).

#### **Fruits**

Globose to ovoid, glabrous capsule, 5 mm in length, enclosed with persistent calyx, pedicel 1-3 cm long purplish when fresh.

#### Leaves

Simple, opposite and decussate, somewhat sessile, glabrous, obovateoblong to spatulate in shape, 0.6-2.5 cm in length and 3-8 mm in width, entire, lower surface is with minute specks, obscurely 1-3 nerved, color faint green (Fig. 1).

#### Roots

Fragments of dried main roots are cylindrical, about 5 mm in diameter, longitudinally wrinkle, and off white in color.

#### Seeds

Numerous, very minute, <1 mm wide, oblong, or irregular.

# Stem

Pieces of stem are cylindrical, glabrous, nodes prominent at places attached with vertically growing branches and ventrally to cluster of tortuous, brittle roots, internodes about 1-1.5 cm in length and 3-4 mm in diameter, pale yellowish green with a purplish tinge (Fig. 1).

### Organoleptic characters of B. monnieri

Qualitative evaluation based on the sensory profile by observation of color, odor, taste, and consistency given in Table 2.

#### Physico-chemical properties of B. monnieri

Loss on drying, total ash, acid insoluble ash, water soluble ash, water-soluble extractive, moisture content, pH, and alcohol soluble extractive values were calculated as per Indian pharmacopoeia (Table 3) [10].

### Chemical constituents of B. monnieri

Bacopa monneriea indicated the presence of alkaloids, Brahmine, and herpestine. The major bioactive constituent of the plant is tetracyclic triterpenoid saponins, bacosides A and B (crystalline mixture of several saponins). Among these, bacoside A is predominnat. Other saponins include bacosides A1 and A3, bacopasaponins A, B, C, D, E, and F. The other minor compounds include alkaloids (viz., herpestine and Brahmin) and flavonoids (viz., luteolin-7glucoside, glucuronyl-7-apigenin and glucortonyl-7-luteolin, common phytosterols) (Table 4 and Fig. 2) [11].

#### C. rotundus (Nagarmotha)

*Cyperus Rotundus* It is a perennial shrub that attains a height of up to 40 cm, it has a dark green thin stem and the leaves are long and sharp, with a width of 1/6 to 1/3 inch. While the flower stem has a triangular cross-section, the flower is 2 to 8 inch in length, has three-stamina and a three-stigma carpel. It is also bisexual [12].

*C. rotundus* L. (purple nut sedge) belonging to the family Cyperaceae, it is a perennial herb, indigenous to India and found in tropical and subtropical regions throughout the world. It is a notorious weed and has a destructive effect on agricultural yields after it invades the crop fields.

The plant is considered an invasive weed; it has been called "the world's worst weed." The plant requires sun and moist conditions, though it grows in sandy soil, as well as in loamy moist fields and in tropical rainforests. It is especially prevalent in southern India, where its essential oil is used in perfumery. As an invasive weed, it is considered troublesome in 92 countries and adversely affects more than 50 crops,



Fig. 1: Flower & whole plant of Bacopa Monnieri (Brahmi)

Table 1: Properties, action, formulations and therapeutic uses of B. monnieri, C. rotundus, E. offcinalis

| E. offcinalis          | C. rotundus                                    | B. monnieri                             |
|------------------------|------------------------------------------------|-----------------------------------------|
| Properties and action  |                                                |                                         |
| Rasa: Madhura, Amla,   | Rasa: Katu, Tikta, Kasaya                      | Rasa: Madhura, Tikta, Kasaya            |
| Katu, Tikta, Kasaya    |                                                |                                         |
| Guna: Laghu, Ruksa     | Guna: Laghu, Ruksa                             | Guna: Laghu, Sara                       |
| Virya: Sita            | Virya: Sita                                    | Virya: Sita                             |
| Vipaka: Madhura        | Vipaka: Katu                                   | Vipaka: Madhura                         |
| Karma: Tridosajit,     | Karma: Sothahara, Dipana, Grahi, Krmighna,     | Karma: Kaphahara, Medhya, Rasayana,     |
| Vrsya, Rasayana,       | Pacana, Visaghna, Pittakaphahara, Sthoulyahara | Svarya, Vatahara, Visahara, Ayusya,     |
| Caksuya                |                                                | Matiprada, Prajasthapana, Mohahara      |
| Important formulations |                                                |                                         |
| Cyavanaprasa           | Musakarista, Mustakadi Kvatha, Asokarista,     | Sarasvatarista, Brahmi Ghrta,           |
|                        | Mustakadi Curna, Mustakadi, Mustakadi Lehya,   | Ratnagiri Rasa, Brahmi, Vati, Sarasvata |
|                        | Dhamya Pancaka Kvatha Curna, Piyusavalli Rasa  | Curna, Smrtisagara Rasa                 |
| Therapeutic uses       |                                                | · ·                                     |
| Raktapitta, Amlapitta, | Agnimandya, Ajerna, Jvara, Sangrahani, svasa,  | Kustha, Jvara, sopha, Pandu, Prameha,   |
| Prameha, Daha          | Kasa, Mutrakrcchra, Vamana, Stanyavikara,      | Manasavikara                            |
|                        | Sutikaroga, Atisara, Amavata, Krimiroga.       |                                         |

E. offcinalis: Emblica offcinalis, C. rotundus: Cyperus rotundus, B. monnieri: Bacopa monnieri

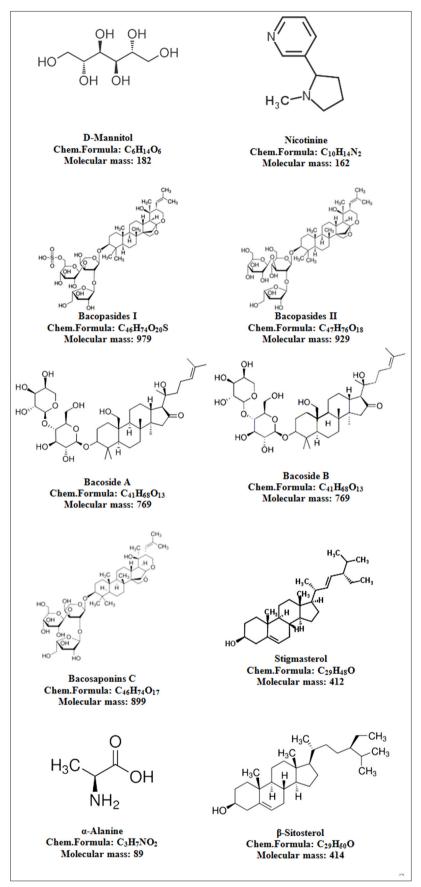



Fig. 2: Chemical constituents present in Bacopa Monnieri (Brahmi)

Table 2: Organoleptic characters of B. monnieri (Brahmi)

| Serial number | Plant parts | Parameters  | Observations      |
|---------------|-------------|-------------|-------------------|
| 1             | Flowers     | Colour      | Blue or white     |
|               |             | Consistency | Soft, smooth      |
|               |             | Odour       | Slightly aromatic |
|               |             | Taste       | Bitter            |
| 2             | Fruits      | Colour      | Green             |
|               |             | Consistency | Soft, smooth      |
|               |             | Odour       | Bitter            |
|               |             | Taste       | Bitter            |
| 3             | Leaves      | Colour      | Greenish brown    |
|               |             | Consistency | Smooth            |
|               |             | Odour       | Pungent           |
|               |             | Taste       | Bitter-astringent |
| 4             | Powder      | Colour      | Greenish brown    |
|               |             | Consistency | Rough             |
|               |             | Odour       | Characteristic    |
|               |             | Taste       | Bitter            |
| 5             | Stem        | Colour      | Brownish green    |
|               |             | Consistency | Soft, smooth      |
|               |             | Odour       | Pungent           |
|               |             | Taste       | Bitter            |

B. Monnieri: Bacopa monnieri

Table 3: Physico-Chemical properties of B. monnieri (Brahmi)

| Serial<br>number | Parameters                     | Observations (%) |
|------------------|--------------------------------|------------------|
| 1                | Acid insoluble ash (w/w %)     | 1.3              |
| 2                | Alcohol soluble extractive     | 28               |
|                  | value (w/w %)                  |                  |
| 3                | Foreign matter                 | 1.8              |
| 4                | Loss on drying (w/w %)         | 12.50            |
| 5                | Moisture content               | 88.4 g/100 g     |
| 6                | pH value                       | 6.8              |
| 7                | Total ash (w/w %)              | 18.0             |
| 8                | Water soluble extractive value | 22.70            |

B. Monnieri: Bacopa monnieri

Table 4: Chemical constituents present in various parts of B. Monnieri: (Brahmi)

| Parts                                  | <b>Chemical constituents</b>                                                                                                                                                                                                                                                                                  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flowers, Fruits,<br>Leaves, Root, Stem | Aspartic acid, bacogenin A1, A2, A3, A4, bacopasides I, II, III, IV and V, bacosaponins A, B, C and D, bacoside A and B, bacosine, bacosterol, betulinic acid, brahmine, D-mannitol, glutamic acid, herpestine, nicotinine, pseudojujubogenin glycoside, stigmasterol, $\alpha$ -Alanine, $\beta$ -Sitosterol |

B. Monnieri: Bacopa monnieri

including sugar cane, corn, cotton, rice, and many vegetables. Cyperus grows rapidly and fills the soil with its tangle of roots and rhizomes; this one species (C. rotundus) can produce up to 40,000 kg/hectare of underground plant material. The plant prefers light (sandy) and medium (loamy) soils. The plant prefers acid, neutral and basic (alkaline) soils. It cannot grow in the shade. It requires moist or wet soil [13].

# Taxonomical classification of C. rotundus

- Class: Liliopsida
- Division: Magnoliophyta
- Family: Cyperaceae
- Genus: Cyperus L.
- Kingdom: Plantae
- · Order: Cyperales
- Species: C. rotundus L.

- Subclass: Commelinidae
- Subkingdom: Tracheobionta
- Superdivision: Spermatophyta

#### Vernacular names of C. rotundus

- · Assam: Mutha
- · Bengal: Moothoo, mutha
- English: Nut grass, Purple nut sedge
- Gujarat: Moth, Nagarmotha
- Hindi: Nagarmotha, Motha
- Kannada: Konnari Gadde
- · Latin name: C. rotundus
- English name: Nut grass
- Indian name: Mustaka, Nagarmotha, Motha
- Marathi: Moth, Nagarmotha, Bimbal
- Punjab: Mutha, Motha
- Sanskrit: Bhadramusta, Mutha
- Tamil: Korai
- Telgu: Tungamustalu
- Urdu: Sad Kufi

#### Plant morphological description of C. rotundus [14]

### Flowers

Inflorescence is spike or panicle or gloose head, but the unit of inflorescence is a spikelet. In spikelet there may be one or more flowers, but each is brone in the axil of a giume and is minute in size, flowering in July/August, flowers red brown to almost black, unisexual or bisexual (Fig. 3).

#### Leaves

Simple, alternate, tristichous; Leaf dark green above, with reddish brown sheaths, clustered at the base of stem, ligule absent, sheath closed (Fig. 3).

# Rhizomes

Rhizome many, slender; Tuber-white, succulent when young, hard and black when mature (Fig. 3).

# Seeds

Albuminous (Fig. 3).

#### Stem

Stem-leafy at base arising from a tuber. Culm-dark green, glabrous. Stem solid, usually triangular (Fig. 3).

### Organoleptic characters of C. rotundus

Qualitative evaluation based on sensory profile by observation of color, odor, taste, and Consistency given in Table 5.

#### Physico-chemical properties of C. rotundus

Total ash, acid insoluble ash, water soluble ash, white starch content, water-soluble extractive, alcohol soluble extractive, viscosity, and amylose content values were calculated as per Indian pharmacopoeia (Table 6) [15].

## Chemical constituents of C. rotundus

Phytochemical studies have shown that the major chemical components of this herb are essential oils, flavonoids, terpenoids, mono-and sesquiterpenes. The plant contains the following chemical constituents are shown in Fig. 4 and Table 7 [16].

## Emblica officinalis (Amla)

*E. officinalis* (Amla) is a prestigious herb finds it mention in Charak Samhita as a Rasayan. Rasayan is a thing that prevents aging and promote longevity. Extensively used herb in making Ayurvedic medicines because of its miraculous actions. According to Ayurvedic

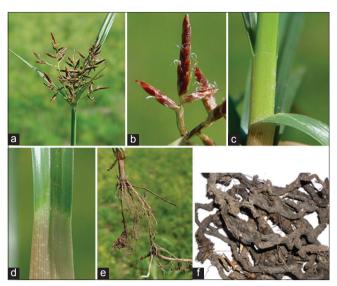



Fig. 3: (a) Fruits, (b) Flowers, (c) Stem, (d) Leaves, (e) Roots, (f) Rhizomes of Cyperus Rotundus (Nagarmotha)

Table 5: Organoleptic characters of C. rotundus (Nagarmotha)

| Serial<br>number | Parameters  | Observations                            |
|------------------|-------------|-----------------------------------------|
| 1                | Colour      | Dark brown or black externally and      |
|                  |             | internally creamish-yellow              |
| 2                | Consistency | Slightly tuberous at the base           |
| 3                | Odour       | Pleasant, Fragrant                      |
| 4                | Taste       | Slightly pungent, bitter and astringent |

Table 6: Physico-chemical properties of *C. Rotundus* (Nagarmotha)

| Serial<br>number | Parameters                         | Observations (%) |
|------------------|------------------------------------|------------------|
| 1                | Acid soluble Ash (w/w %)           | 3.00             |
| 2                | Alcohol soluble extractive (w/w %) | 9.068            |
| 3                | Adhesive strength and line-spread  | 50°C             |
| 4                | Amylose content                    | 26.73            |
| 5                | Total ash                          | 5.9-6.35         |
| 6                | Viscosity                          | 20°C             |
| 7                | Water soluble ash                  | 1.10             |
| 8                | Water soluble extract              | 16.36            |
| 9                | White starch content               | 24.1             |

C. rotundus: Cyperus rotundus

doctors regular usage of Amla will make you live more than 100 years like a youth [17]. Amla is supposed to rejuvenate all the organ systems of the body, provide strength and wellness. It keeps us away from all the diseases by boosting our immune system. It is believed by Ayurvedic practitioners that if an individual regularly takes Amla he can live up to an age of 100 without suffering from any type of ailments. *E. officinalis* (Amla) it is a small or medium sized tree, found in mixed deciduous forests, ascending to 1300 m on hills and cultivated in gardens and homeyards.

Fresh fruit is refrigerant, diuretic, and laxative. Fruit is also used as carminative and stomachic. Dried fruit is sour and astringent. Bark is astringent. The herb is also aphrodisiac, hemostatic, nutritive tonic, and rejuvenative. It increases red blood cell count. *E. officinalis* (Amla) is one of the highest natural sources of Vitamin C (3,000 mg per fruit). Amla fruit paste is main ingredient of Chyawanprash, a popular Ayurvedic tonic. Amla is known as Amritphale in Sanskrit, which literally means the fruit of heaven or nectar fruit [18].

#### Taxonomical classification of E. officinalis

Class: Dicotyledonae
 Division: Angiospermae
 Family: Euphorbiaceae
 Genus: Emblica

Kingdom: PlantaeOrder: GeranialesSpecies: Officinalis Gaertn.

• Synonym: *Phyllanthus emblica* Linn

#### Vernacular names of E. officinalis

Assam: Amlaku, Amalaki, Amalakhu

Bengali: DhatriChinese: An mole

· English: Emblic myrobalan, Indian Gooseberry

French: Phyllanthe Emblica

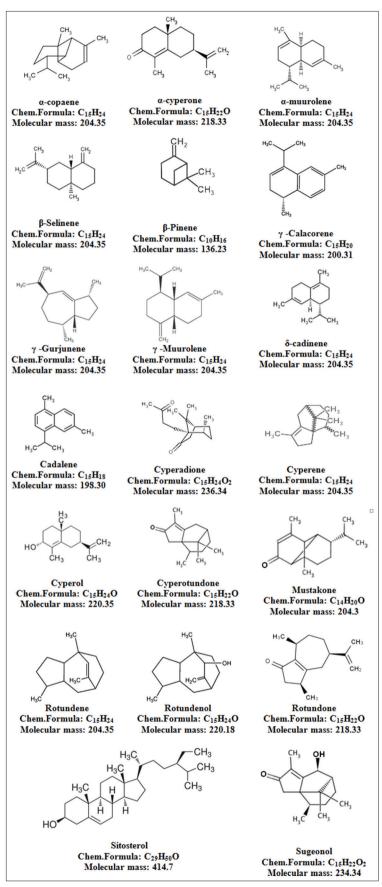
German: AmlaGujarati: AmblaHindi: Amla

Italian: Mirabolano emblico

Kannada: Nelli Kayi

• Karnataka: Nellikayi, Bela nelli

Kashmir: Aonla
Malayalam: Nelli Kayi
Malaysian: Popok Melaka
Marathi: Amla


Orissa: Anala, AinlaPunjabi: Aula, Amla

Sanskrit: Dhatriphala, Amla, Amaliki, Amalakan, Sriphalam, Vayastha

Tamil: NelliTelugu: Usirikaya

Table 7: Chemical constituents present in various parts of C. Rotundus (Nagarmotha)

| Parts         | <b>Chemical constituents</b>                                                              |
|---------------|-------------------------------------------------------------------------------------------|
| Arial         | Ammiol, Bezo-α-pyrone (coumarin), caffeic acid, furochromones, Isohamnetin, khellin,      |
|               | pcoumaric acid, protocatechuric acid, salicylic acid, sitosteryl (6-hentriacontanoyl)-β-D |
|               | galactopyranoside, tricin, visnagin                                                       |
| Leaves        | Auresidin, Luteolin                                                                       |
| Rhizomes      | Calcium, caryophyllene, camphene, copaene, cyperene, cyperenone, cyperol,                 |
|               | cyperotundone, cyperolone, D-copadiene, D-epoxyguaiene, isocyperol, isokobusone,          |
|               | kobusone, limonene, linoleic acid, linolenic acid, mustakone, myristic acid, oleanolic    |
|               | acid, oleic acid, P-cymol, patchoulenone, rotundene, rotundenol, rotundone, selinatriene, |
|               | sitosterol, stearic acid, sugeonol, sugetriol, α–cyperolone, α–rotunol, β-cyperone,       |
|               | β-pinene, β-rotunol, β-selinene                                                           |
| Essential Oil | 2-methoxy-8-methyl-1,4-naphthalenedione, 4, 4 $\alpha$ -5, 6, 7, 8-hexahydro-4            |
|               | α-5dimethyl-3-(1-methyl ethylidene)-2 (3H)-naphthalenone, Cyperene, Fructose, Glucose,    |
|               | Logipinocarvone, Oxo-α-ylangene, Protein, Starch, α-copaene, α-cyperone, α-gurjunene,     |
|               | α-hisaholene, β-selinene                                                                  |



 $Fig.\ 4: Chemical\ constituents\ present\ in\ \textit{Cyperus}\ \textit{Rotundus}\ (\textit{Nagarmotha})$ 

#### Plant morphological description of E. officinalis [19,20]

#### Bark

Thin light grey bark exfoliating in small thin irregular flakes (Fig. 5).

#### Flowers

Small, inconspicuous, and greenish-yellow flowers are borne in compact clusters in the axils of the lower leaves. Male flowers are unisexual and numerous on short slender pedicels, females few, sub sessile, ovary 3 celled (Fig. 5).

#### Fruit

Pale yellow, depressed, fleshy, globose, about 2 cm in diameter with 6 obscure vertical furrows enclosing 6 trigonous seeds in 2 seeded 3 crustaceous cocci (Fig. 5).

#### Leaves

They are 3 mm wide and 1.25-2 cm long, alternate, bifarious, pinnate, leaflets numerous, alternate, linear-obtuse, entire, petioles are striated, round (Fig. 5).

#### Seeds

Obovate-triangular, 3 celled, seeds 2 in each cell (Fig. 5).

#### Organoleptic characters of E. officinalis

Qualitative evaluation based on sensory profile by observation of color, odor, taste, and consistency given in Table 8.

#### Physico-chemical properties of E. officinalis

Total ash, acid insoluble ash, water-soluble extractive, alcohol soluble extractive, pH, Powder microscopic, disintegration time, loss on drying values were calculated as per Indian pharmacopoeia (Table 9) [6].

#### **Nutritive value**

E. officinalis (Amla) has been called the first-rate of the Ayurvedic rejuvenating herb, considering by way of the usual stability of tastes (sweet, sour, pungent, bitter and astringent) multi-function fruit and is well identified for its dietary characteristics. E. officinalis (Amla) fruit is regularly the richest recognized normal source of Vitamin C (200-900 mg/100 g of safe to eat component). The fruit juice involves close to 30 instances as so much Vitamin C as orange juice and a single fruit is the same as antiscorbutic value to at least one or two oranges. It also involves minerals and amino acids akin to calcium, phosphorus, iron, niacin, carotene, thiamine, riboflavin, and nicotinic acid (Fig. 6) [18,21].

#### Chemical constituents

The fruits of *E. officinalis* are rich in tannins. The fruits have 28% of the total tannins distributed in the whole plant. The fruit contains two hydrolysable tannins emblicanin A and B, which have antioxidant properties, one on hydrolysis gives gallic acid, ellagic acid and glucose wherein the other gives ellagic acid and glucose. The fruit also contains phyllemblin. Below table show chemical constituents of different parts of *E. officinalis* (Amla) plant (Table 10, Fig. 7) [22,22].

# Inorganic components present in *B. monnieri, C. rotundus, E. officinalis*

Prepared ash of the drugs material was added with 50% of v/v HCl. The filtrate was then subjected to analyze the inorganic elements. The results are tabulated in Table 11 [4,23,24].

# Phyto-constituent screening of B. monnieri, C. rotundus, E. officinalis

The phyto-constituents analysis revealed the presence of secondary metabolites such as tannins, saponins, alkaloids, flavonoid, steroids,

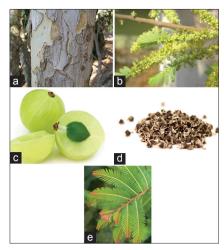



Fig. 5: (a) Bark, (b) Flowers, (c) Fruits, (d) Seeds, (e) Leaves of *Emblica Officinalis* (Amla)



Fig. 6 : Nutritional value of fruit of *Emblica Officinalis* (Amla) (% or per 100g)

Table 8: Organoleptic characters of E. officinalis (Amla)

| Serial number | Parameters  | Observations    |
|---------------|-------------|-----------------|
| 1             | Colour      | Yellowish green |
| 2             | Consistency | Hard            |
| 3             | Odour       | Aromatic        |
| 4             | Taste       | Sour            |

E. offcinalis: Emblica offcinalis

Table 9: Physico-chemical properties of E. officinalis (Amla)

| Serial<br>number | Parameters                         | Observations        |
|------------------|------------------------------------|---------------------|
| 1                | Acid insoluble ash (w/w %)         | 1.90                |
| 2                | Alcohol soluble extractive (w/w %) | 15.5                |
| 3                | Disintegration time                | 39 mins             |
| 4                | Hardness test                      | $6.9 \text{kg/m}^2$ |
| 5                | Loss on drying at 110°C (w/w %)    | 3.4                 |
| 6                | pH of 5% aqueous solution          | 3.37                |
| 7                | Powder microscopic                 | 15-20 micro         |
| 8                | Total ash (w/w %)                  | 5.33                |
| 9                | Water soluble extractive (w/w %)   | 41.30               |

E. offcinalis: Emblica offcinalis

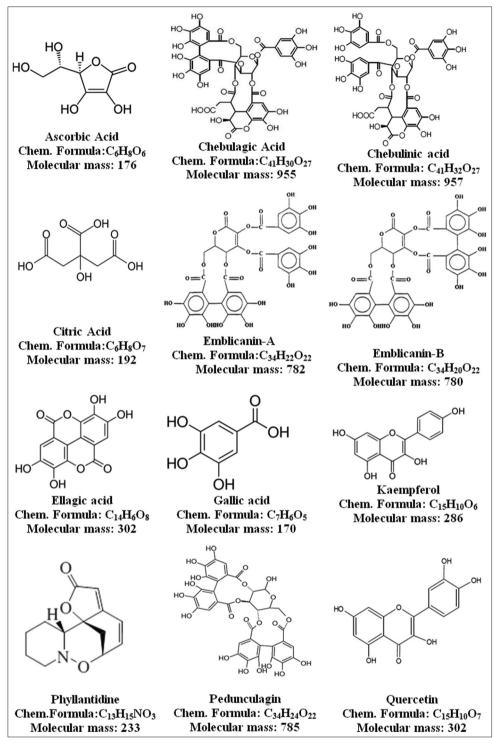



Fig. 7: Chemical constituents present in Emblica officinalis (Amla)

reducing sugar, carbohydrate, and many others in *B. monnieri*, C. rotundus, and E. officinalis shown in Table 12 [23-27].

# Medicinal and traditional uses of *B. monnieri, C. rotundus, E. officinalis*

Its beneficiary uses in a number of diseases are enlisted in Table  $13\ [7,14,20,28,29-35]$ .

### CONCLUSION

Bacopa monniera, E. officinalis and C. rotundus are rich in pharmacological and therapeutics activities. The plants and their

extracts have been extensively investigated in several laboratories for their pharmacological and therapeutic effects.

Herbs and medicinal plants are rich in phytochemicals and they have been used for centuries in the treatment and prevention of various diseases. Some phytochemicals may be dangerous and some have no effect on human health. Thousands of phytochemicals have been isolated and characterized from plants, including fruits and vegetables.

With the global increase in the demand for plant-derived medicine as an alternative to synthetic medicine, there is a need to ensure the quality

Table 10: Chemical constituents present in various parts of E. Officinalis

| Part     | Chemical constituents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bark     | Leucodelphinidin, Lupeol, β-sitosterol, Tannins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Fruit    | Alanine, arginine, ascorbic acid, aspartic acid, ash, β-carotene, boron, calcium, carbohydrates, chebulagic acid, chebulaginic acid, chebulic acid, chebulinic acid, chloride, copper, corilagic acid, corilagin, cystine, d-fructose, d-glucose, ellagic acid, emblicol, emblicanin, ethyl gallate, fat, fibre, flavonoids, gallic acid, gallic acid ethyl ester, gibberellina-1, gibberellin-a-3, gibberellin-a-4, gibberellin-a-7, gibberellin-a-9, glucogallin, glucose, glutamic acid, glycine, glycosides, histidine, iron, isoleucine, leucine, lysine, magnesium, manganese, methionine, myo-inositol, myristic acid, niacin, nitrogen, pectin, phenylalanine, phosphorus, phyllantidine, phyllantine, phyllemblic acid, phyllemblinic acid, polysaccharide, potassium, proanthocyanidins, proline, protein, quercetin, riboflavin, rutin, selenium, serine, silica, sodium, starch, sucrose, sulfur, tannin, terchebin, thiamin, threonine, trigalloyl |
|          | glucose, tryptophan, tyrosine, valine, water, zeatin, zeatin nucleotide, zeatin riboside, zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Leaf     | Amlaic acid, astrogalin, ellagic acid, gallo-tanin, kaempferol, kaempferol-3-o-glucoside, phyllanthin, rutin, tannin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pericarp | Ellagic acid, emblicol, gallic acid, phyllemblic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Root     | Ellagic acid, lupeol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Seed     | Linoleic acid, linolenic acid, myristic acid, oleic acid, palmitic acid, phosphatides, stearic acid, β-sitosterol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Shoot    | Chebulagic acid, $eta$ -sitosterol, chibulinic acid, corilagin, ellagic acid, gallic acid, glucogallin, lupeol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

E. offcinalis: Emblica offcinalis

Table 11: Inorganic components present in B. monnieri, C. rotundus, E. officinalis

| Serial number | Parameters | Observations |             |                |
|---------------|------------|--------------|-------------|----------------|
|               |            | B. monnieri  | C. rotundus | E. officinalis |
| 1             | Calcium    | +            | +           | +              |
| 2             | Camphene   | -            | +           | _              |
| 3             | Carbonate  | _            | _           | -              |
| 4             | Chloride   | +            | _           | +              |
| 5             | Copaene    | -            | +           | _              |
| 6             | Copper     | _            | +           | +              |
| 7             | Iron       | _            | +           | +              |
| 8             | Magnesium  | +            | +           | +              |
| 9             | Manganese  | _            | +           | +              |
| 10            | Nitrate    | _            | _           | -              |
| 11            | Phosphorus | +            | _           | -              |
| 12            | Potassium  | _            | +           | +              |
| 13            | Sodium     | +            | +           | +              |
| 14            | Sulphate   | +            | _           | _              |
| 15            | Zinc       | -            | +           | +              |

+: Present, -: Absent, E. offcinalis: Emblica offcinalis, C. rotundus: Cyperus rotundus, B. monnieri: Bacopa monnieri

Table 12: Phyto-constituent Present in B. monnieri, C. rotundus, E. officinalis

| Serial number | Phyto-constituent | Observations |             |                |
|---------------|-------------------|--------------|-------------|----------------|
|               |                   | B. monnieri  | C. rotundus | E. officinalis |
| 1             | Alkaloids         | +            | +           | +              |
| 2             | Amino acids       | _            | _           | -              |
| 3             | Carbohydrates     | +            | +           | +              |
| 4             | Fixed Oil         | _            | _           | -              |
| 5             | Flavanoid         | +            | +           | +              |
| 6             | Glycoside         | _            | _           | -              |
| 7             | Phytosterols      | _            | +           | -              |
| 8             | Proteins          | +            | +           | _              |
| 9             | Reducing sugar    | _            | +           | -              |
| 10            | Saponins          | +            | +           | -              |
| 11            | Steroids          | _            | +           | -              |
| 12            | Tannins           | +            | +           | +              |
| 13            | Triterpenoids     | +            | +           | _              |
| 14            | Vitamin C         | -            | _           | +              |
| 15            | Volatile oil      | _            | +           | -              |

+: Present, -: Absent, E. offcinalis: Emblica offcinalis, C. rotundus: Cyperus rotundus, B. monnieri: Bacopa monnieri

of the herbal drugs using modern analytical techniques, for therapeutic efficacy and safety.

Green plants synthesize and preserve a variety of biochemical products, many of which are extractable and used as chemical feed stocks or as

raw material for various scientific investigations. Many secondary metabolites of plant are commercially important and find use in a number of pharmaceutical compounds. The knowledge of medicinal plants used by the people of seems to be well known to its culture and tradition.

Table 13: Pharmacological and traditional applications of B. monnieri, C. rotundus, E. officinalis

| B. monnieri                  | C. rotundus                         | E. officinalis          |
|------------------------------|-------------------------------------|-------------------------|
| Adaptogenic activity         | Abortifacient                       | Aging                   |
| Alzheimer's disease          | Actogogue                           | Anemia                  |
| Analgesic effects            | Alopecia (hair growth)              | Anti-amnesiac           |
| Anti-anxiety activity        | Alterative                          | Anti-atherosclerotic    |
| Anti-bacterial activity      | Analgesic                           | Anti-bacterial activity |
|                              | 9                                   | 2                       |
| Anti-cancer activity         | Anodyne                             | Anti-cancer activity    |
| Anti-cholinesterase activity | Anthelmintic                        | Anti-epileptic          |
| Anti-convulsant activity     | Anti-bacterial                      | Anti-fungal activity    |
| Anti-depressant activity     | Anti-biotic                         | Anti-inflammatory       |
| Anti-epileptic activity      | Anti-dysenteric                     | Anti-microbial activity |
| Anti-inflammatory activity   | Anti-emetic activity                | Anti-nociceptive        |
| Anti-leishmanial activity    | Anti-fungal                         | Anti-oxidant activity   |
| Anti-microbial activity      | Anti-inflammatory                   | Anti-pyretic            |
|                              | •                                   |                         |
| Anti-oxidant activity        | Anti-oxidant activity               | Anti-ulcerogenic        |
| Anti-parkinson               | Anti-malarial                       | Anti-venom activity     |
| Anti-spasmodic activity      | Anti-convulsant activity            | Anti-viral activity     |
| Anti-tubercualar activity    | Anti-microbial                      | Aperient                |
| Anti-ulcergenic activity     | Anti-parasitic                      | Astringent              |
| Anxiolytic Activity          | Anti-cancer activity                | Blood sugar             |
| Attention-deficit disorder   | Anti-pruritic                       | Bronchitis              |
| Blood pressure               | Anti-pyretic                        | Cardioprotective        |
| 1                            |                                     |                         |
| Bronchovasodilatory activity | Anti-spatic activity                | Cholesterol             |
| Cell stabilization activity  | Anti-rheumatic                      | Cough                   |
| Endocrine effects            | Anti-spasmodic                      | Cytoprotective          |
| Free radical scavenging      | Anti-tussive                        | Dental problems         |
| Gastrointestinal             | Aphrodisiac                         | Diabetes                |
| Hair growth (Alopecia)       | Aromatic                            | Diarrhea                |
| Immunomodulatory activity    | Astringent                          | Dosage of Vitamin C     |
| Memory enhancer              | -                                   | Dysentery               |
|                              | Astringent                          |                         |
| Neuroprotective role         | Bactericide                         | Dyspepsia               |
| Sedative                     | Carminative                         | Eye Care                |
| Spasmolytic activity         | Contraceptive                       | Febrifuge               |
| Tranquilizing activity       | Demulcent                           | Gonorrhea               |
| Wound Healing activity       | Deobstruent                         | Hair growth (alopecia)  |
| ana meaning activity         | Diaphoretic                         | Healing dermal wounds   |
|                              | Diuretic                            | Heart disorders         |
|                              |                                     |                         |
|                              | Emmenagogue                         | Hepatoprotective        |
|                              | Emollient                           | Hypotensive potential   |
|                              | Febrifuge                           | Immunomodulatory        |
|                              | Fumigant                            | Indigestion             |
|                              | Fungistatic                         | Jaundice                |
|                              | Hypoglycemic                        | Lipid lowering          |
|                              | Hypotensive                         | Memory enhancing activi |
|                              | Gastroprotective activity           | Menstrual problems      |
|                              |                                     |                         |
|                              | Infectious diarrhea                 | Migraine                |
|                              | Immunostimulant                     | Natural mouth freshner  |
|                              | Improves circulation                | Nephro protective       |
|                              | Increases appetite                  | Nitric oxide radical    |
|                              | Lipid lowering activity             | Ophthalmic disorders    |
|                              | Larvicidal activities               | Pancreatitis            |
|                              | Lithontripic                        | Piles                   |
|                              |                                     | Pruritus                |
|                              | Lowers blood pressure               |                         |
|                              | Nervine                             | Radiation protection    |
|                              | Promotes memory                     | Respiratory problems    |
|                              | Purifies the blood                  | Rheumatism              |
|                              | Reduces breast tumors               | Scabies and itch        |
|                              | Sedative                            | Scurvy                  |
|                              | Stimulant                           | Skin sores and wound    |
|                              |                                     |                         |
|                              | Stomachic                           | Spasmolytic             |
|                              | Tonic                               | Triphala                |
|                              | Tranquilizer                        | Urinary stone           |
|                              | Vasodilator                         | Vaginal complaints      |
|                              | Vermifuge                           | Vermifuge               |
|                              |                                     |                         |
|                              | Vulnerary<br>Wound healing activity | Vomiting                |
|                              | vyoung nealing activity             | Weight management       |

E. offcinalis: Emblica offcinalis, C. rotundus: Cyperus rotundus, B. monnieri: Bacopa monnieri

#### REFERENCES

- Biswas K, Chattopadhyay I, Banerjee RK, Bandyopadhyay U. Biological activities and medicinal properties of neem (*Azadirachta indica*). Curr Sci 2002;82(11):1336-45.
- Satyavati GV, Raina MK, Sharma M. Chemical investigation of Herpestis monniera Linn (brahmi). Indian J Pharmacol 1976;21:303-4.
- Indian Drug Manufacturers' Association. Indian Herbal Pharmacopoeia.
   Vol. I. Mumbai, Jammu Tawi: Indian Drug Manufacturers' Association, Regional Research Laboratory (CS1R); 1998. p. 30-2.
- Jain PK, Das D, Jain P. Evaluating hair growth activity of herbal hair oil. Int J PharmTech Res 2016;9(3):321-7.
- WHO. Quality Control Methods for Medicinal Plant Materials. Geneva: WHO; 1998. p. 16-27.
- Ayurvedic Pharmacopia of India, Government of India. Vol. 1. New Delhi: Ministry of Health & Family Welfare, Department of ISM & H; 2001. p. 5-8.
- Jain PK, Das D, Jain P, Jain P. Pharmacognostic and pharmacological aspect of *Bacopa monnieri*: A review. Innov J Ayurvedic Sci 2016;4(3):7-11.
- Singh HK, Shanker G, Patnaik GK. Neuropharmacological and antistress effects of bacosides: A memory enhancer. Indian J Pharmacol 1996;28:47.
- 9. Tripathi YB, Chaurasia S, Tripathi E, Upadhyay A, Dubey GP. *Bacopa monniera* Linn. As an antioxidant: Mechanism of action. Indian J Exp Biol 1996;34:523-6.
- Anonymous. Indian Pharmacopoeia. 4th ed. New Delhi: Government of India, Ministry of Health, Controller of Publications; 1996. p. 108.
- Garai S, Mahato SB, Ohtani K, Yamasaki K. Bacopasaponin D--A pseudojujubogenin glycoside from *Bacopa monniera*. Phytochemistry 1996;43(2):447-9.
- 12. Bendixen LE, Nandihalli UB. World-wide distribution of purple and yellow nutsedge (*Cyperus rotundus* and *C. Esculentus*). Weed Technol 1987;1:61-5.
- Wills GD, Briscoe GA. Anatomy of purple nuts edge. Weed Sci 1987:18(5):631-5.
- 14. Jain PK, Das D. Ethanopharmacological study of *Cyperus rotundus* § a herb used by tribal community as a traditional medicine for treating various diseases. Innov J Ayurvedic Sci 2016;4(2):4-6.
- 15. Sivapalan SR, Jeyadevan P. Physico-chemical and phyto-chemical study of rhizome of *Cyperus rotundus* Linn. Int J Pharmacol Pharm Technol 2012;1(2):42-6.
- Kilani S, Abdelwahed A, Ben Ammar R, Hayder N, Ghedira K, Chraief I, et al. Chemical composition, antibacterial and antimutagenic activities of essential oil from (Tunisian) Cyperus rotundus. J Essent Oil Res 2005;17(6):695-700.
- 17. Singh E, Sharma S, Pareek A, Dwivedi J, Yadav S, Sharma S. Phytochemistry, traditional uses and cancer chemopreventive activity

- of amla (*Phyllanthus emblica*): The sustainer. J Appl Pharm Sci 2011;2(1):176-83.
- Jain SK, akhurdiya DS. Anola: Potential fruit for processing. Delhi Gard Mega 2000;38(1):50-1.
- Scartezzini P, Antognoni F, Raggi MA, Poli F, Sabbioni C. Vitamin C content and antioxidant activity of the fruit and of the Ayurvedic preparation of *Emblica officinalis* Gaertn. J Ethnopharmacol 2006;104(1-2):113-8.
- Jain PK, Das D, Pandey N, Jain P. Traditional Indian herb *Emblica officinalis* & its medicinal importance. Innov J Ayurvedic Sci 2016;4(4):1-15.
- Bharthakur NN, Arnold NP. Chemical analysis of the emblic (*Phyllanthus emblica* L) and its potential as a good sources. Sci Hortic 1991;47:99-105.
- 22. Habib-ur-Rehman, Yasin KA, Choudhary MA, Khaliq N, Atta-ur-Rahman, Choudhary MI, *et al.* Studies on the chemical constituents of *Phyllanthus emblica*. Nat Prod Res 2007;21:775-81.
- 23. Jain PK, Singhai AK, Das D. Alternative herbal drugs used for treating hair disease. Asian J Pharm Clin Res 2016;9(1):75-7.
- Jain PK, Dass DJ. Evaluating hair growth potential of some traditional herbs. Asian J Pharm Clin Res 2015;8(6):150-2.
- Patel SS, Goyal RK. Emblica officinalis geart: A comprehensive review on phytochemistry, pharmacology and ethnomedicinal uses. Res J Med Plant 2012;6:6-16.
- Trease GE, Evans W. Text Book of Pharmacognosy. 12th ed. London: ELBS Publications; 1989. p. 49, 126, 132-137, 205, 248.
- 27. Harborne JB. Phytochemical Methods. London: ; 1973. p. 49-188.
- Sankaran M, Velusamy V, Mani K. Amla: A novel Ayurvedic herb as a functional food for health benefits"- A mini review. Int J Pharm Pharm Sci 2013;5(1):1-4.
- 29. Jain PK, Joshi H, Dass DJ. Drug that causes hair loss and promotes hair growth A review. Int J Res Pharm Biomed Sci 2012;3(4):1476-82.
- Jain PK, Joshi H. Coumarin: Chemical and pharmacological profile. J Appl Pharm Sci 2012;2(6):236-40.
- Kasture VS, Gosavi SA, Ajage RK, Deshpande SG, Inamke SR, Kolp JB. Comparative study of brahmi and brmhamanduki: A review. World J Pharm Pharm Sci 2014;3(6):2217-30.
- 32. Jain PK, Pandey A. The wonder of Ayurvedic medicine *Nyctanthes arbor-tristis*. Int J Herb Med 2016;4(4):9-17.
- 33. Jain PK, Joshi H. Recent developments on anti-convulsants. Int J Res Dev Pharm Life Sci 2012;1(3):105-11.
- Das B, Pal D, Haldar A. A review on *Cyperus rotundus* as a tremendous source of pharmacologically active herbal medicine. Int J Green Pharm 2015;9(4):198-203.
- Hasan R, Islam N, Islam R. Phytochemistry, pharmacological activities and traditional uses of *Emblica officinalis*: A review. Int Curr Pharm J 2016;5(2):14-21.