Most of the nutritional researches regarding transition cows have involved the feeding of total mixed rations or pasture silage and concentrate to cows before and after calving. The nutrition of dairy cows is believed to affect productivity early in lactation. Pre-calving nutrition has an impact on body condition score (BCS) at calving. It has been suggested that increased level of feeding before calving is associated with increased BCS at calving and increased milk yield after calving. The effect of pre-calving feeding may be less evident in cows fed well post-calving. Over conditioned cows, unlike thin cows, produce milk with the expense of their stored fat and as a result they are in negative energy balance and they have low dry matter intake (DMI) during early lactation. It is better to achieve high energy concentration by the use of high-fiber concentrates with a fat supplement, and optimum performance in cows that are fat at calving may be achieved with a higher level of undegradable dietary protein, whereas cows that are thin at calving perform best with higher levels of energy diet. This review has been intended with the objectives of exploring pre- and post-calving nutrition and milking frequency and their effect on production parameters. In addition, I have reviewed the interaction between BCS at calving and nutrient intake during early lactation.

Keywords: Body condition score, Dry matter intake, Milk yield, Negative energy balance, Pre-calving, Post-calving.

INTRODUCTION

Most of the nutritional researches regarding transition cows have involved the feeding of total mixed rations or pasture silage and concentrate to cows before and after calving. While the nutritional management of dry cows is extremely varied, pasture will generally be the most important source of feed for most cows after calving [1]. Feed shortages can occur in pasture-based dairy systems when the quality or availability of pasture is negatively affected by weather conditions or poor grazing management [2]. In pasture-based dairy system, once daily milking is used as a management strategy during early lactation to reduce the heavy workload associated with seasonal calving or to alleviate feed shortage when pasture quality or quantity is reduced [3]. Once daily milking is used in some dairy system as a short to medium-term management strategy in early to mid-lactation, typically to alleviate a temporary feed shortage [4]. However, most dairy cows worldwide are milked twice a day.

The nutrition of dairy cows is believed to affect productivity early in lactation [5]. The transition period is generally defined as "3-4 weeks prepartum to 3-4 weeks postpartum and coincides with a time when the dairy cow is undergoing significant hormonal and metabolic changes as the cow moves from a period of net tissue deposition (pregnancy) to one of net tissue mobilization (lactation)" [1,6]. This period is characterized by a number of physiological changes that may be important, including feed intake, the type of energy and protein, and adaptation of the rumen in preparation for post-calving feed. During early lactation, the energy requirements for maintenance and milk production exceed the amount of energy obtained from dietary sources. Hence, the high energy requirement at the onset of lactation results in a negative energy balance (NEB) that begins a few days prepartum and usually reaches its maximum 2 weeks postpartum which may adversely affect post-partum health and fertility [7]. Therefore, supplementation of dairy cows with high energy diet during early lactation is necessary to avoid NEB and to improve the health status of the cows. Moreover, grain supplementation during late gestation is believed to prepare the rumen for the consumption of high energy concentrate that the cow will be expected to utilize when lactation commences [8]. However, the types of supplements might be taken into account in relation to body condition score (BCS) of the cows at calving. The intent of this review is to assess the interaction between pre- and post-calving nutrition and its effect on milk production with regard to changes in BCS of dairy cows.

PRE- AND POST-CALVING NUTRITION AND THEIR EFFECT ON PRODUCTION PARAMETERS

Nutrition can affect reproduction through its effect on BCS at calving. Cows calving at BCS 4 compared to 5 have an extended postpartum anestrous interval (PPAI), reducing the potential number of breeding events the cow can undergo, particularly for later calving cows [9]. It has been reported that underfed cows in early lactation can prolong periods of anestrous, although short periods (5 weeks) of underfeeding did not affect PPAI [10]. Net energy balance caused by feed restriction would be expected to reduce fertility. Supplements can be used effectively in such situation to increase BCS pre-calving or to meet cow demand in early lactation [11]. When metabolisable energy is restricted in lactating cows, fat and protein in body tissue are mobilized to supply energy which is used for milk synthesis [12].

Pre-calving nutrition has an impact on BCS at calving. Reduced pre-calving nutrition results in reduced BCS [6,13]. The author explained that pre-calving feed restriction lowered the risk of milk fever during the peripartum period. Cows that are conditioned pre-calving are more likely tending to mobilize body reserves unless they are offered sufficient energy feed post calving.
Lack of effect in feeding of additional energy and protein diet before calving on post-partum milk production has been reported [8]. Likewise, there was no interaction with BCS. However, cows in good (3.0-3.5 on a 5 point scale) BCS at calving have higher milk yield post-calving than cows in poor BCS [5]. Feeding additional protein pre-calving, particularly rumen undegradable protein, may minimize the use of body protein reserves for the development of fetus and the reserve will be available to support milk protein production in early lactation [16]. Low intake of protein during pre-partum will lead to mobilization of body protein to meet the requirements of the fetus. Late gestation protein diet appeared to result in greater proportion of cows cycling earlier than cows offered energy diet [8]. However, lack of effect of pre-calving feeding level on post-calving feed intake had been reported by the author. The assumed benefits achieved through feeding concentrates before calving are likely to be the result of microbial adaptation to the highly fermentable carbohydrate diet offered in early lactation and the ability of concentrate to stimulate ruminal papillae development [16]. There is evidence [17] that when cows are put on a low energy density diet in the dry period, the cross-sectional area of ruminal papillae decreases. This could reduce the absorption of volatile fatty acids, the end-products of ruminal fermentation. Furthermore, Dirksen et al. [17] showed that introducing a high energy diet 2 weeks before calving increased the cross-sectional area of ruminal papillae. Thus, the presumption is that cows adapted to concentrates pre-calving will be better able to cope with a high concentrate post-calving diet.

Body condition at calving may affect subsequent reproductive performance. This is due to its association with the degree of N Eb occurring in early lactation and because fat cows may be more susceptible to metabolic disease [18]. Improving BCS at calving increased average milk production and milk fat concentration in cows supplemented with protein and energy rich diet pre-calving and grazed pasture after calving (for 10 weeks) [8]. The author further indicated the improved response of 1.1 kg milk/day for each additional BCS after using the regression analysis of the average milk yield data. Stockdale [18] reviewed the advantage of having higher BCS at calving is dependent on the level of feeding post calving. There is an interaction between calving BCS and level of concentrate supplementation post calving [19]. The interaction between diets offered pre- and post-calving for BCS and blood non-esterified fatty acid (NEFA) indicates that the higher degree of mobilization by cows offered diet high pre-calving can be limited by feeding an energy rich diet post-calving. Thus, cows in good condition at calving should be fed well an energy rich diet to reduce the mobilization of body reserve and increase milk yield [13,20]. Similarly, Roche et al. [13] reported that the effect of pre-calving nutrition is dependent on level of feeding post calving.

THE EFFECT OF MILKING FREQUENCY (MF) ON MILK YIELD

Most dairy cows worldwide are milked twice a day. Reducing MF is much less common; however, once daily milking of dairy cows practiced either strategically during certain parts of the lactation and it is common in key dairying countries where less emphasis is placed on milk production per cow [21]. The effect of once daily milking is that it reduces milk yield by approximately 22%, depending on the stage of lactation, breed, and parity and it may adversely affect lactation length and persistency. Furthermore, a loss of 35-50% milk yield has been reported in full lactation experimental studies [22]. An immediate reduction in milk yield is the most common and consistent observation when cows are milked once daily regardless of the duration of once daily milking [4]. Marked physiological changes occur within the mammary gland during 24 hrs of an extended milking interval. Once daily milking results in changes in mammary permeability which leads to changes in milk composition through increased influx of serum protein and ions and increased efflux of lactose and potassium [22].

The effect of once daily milking is more on primiparous cows, as their udder capacity is smaller [23]. Primiparous cows showed a greater decrease in milk yield compared with multiparous cows when milked >1 over a whole lactation [24]. It has been reported that the milk yield loss due to full lactation once a day milking was greater in 2- and 3-year-old Holstein-Friesian cows compared with those aged 4 years and older [3]. Reduction in MF from 2× to 1× increase in concentration of milk protein, milk fat, serum albumin, sodium, chloride and somatic cell count and resulted in a decrease in the concentration of lactose and potassium [22]. Similarly, Kay et al. [25] reported that yields of milk, fat, protein, and lactose decreased with reduced MF and feeding level during the first 1-3 weeks of lactation. In consistent with this Davis et al. [23] found that cows milked 1× for 3 or 6 weeks post-partum have lower lactose content, a greater protein:Fat ratio than those milked 2× from calving. The lower milk fat content might be explained as reduced activity and transcription of mammary enzymes involved in milk fat synthesis and the lower circulating NEFA concentration in cows milked 1× [26]. It has also been reported [25,26] that during the first 3 weeks of early lactation, cows that were milked 1× had consistently greater plasma glucose concentration compared with those milked 2×, whereas NEFA concentrations were lower in cows milked 1× relative to 2×. This indicates that MF has its own impact on the energy status of milking cows. Cows that were milked 3× for 1-3 weeks early lactation had lower serum glucose, but greater NEFA concentration compared with cows milked 2×. Increasing the MF induced a greater degree of NEFA mobilization during the first 3 weeks of early lactation [26]. In addition, the authors further explained the presence of interaction between MF and duration for glucose and NEFA concentration during week 4-6. The interaction has resulted in a better BCS when cows are milked 1× for 6 weeks compared with 3 weeks; however, there was no interaction afterward.

Greater milk production loss occurs when well fed grazing cows are switched to 1× milking than when cows on a restricted diet switched to 1× milking. In addition, Loielle et al. [27] reported milking 1× for 1 week post-partum caused a long-term reduction in milk yield. The interaction between MF and feeding level may be due to well-nourished cows produce more milk and the udder reaches its maximum capacity earlier [4]. Hence, if MF is switched to 1×, the udders are subjected to longer periods of negative feedback mechanism, resulting low milk production by the milk secretary cells [22].

Cows that had been offered a restricted diet and exposed to 1× milking for three weeks produced the least milk as compared to cows with unrestricted feeding level and milked 2× [25]. This indicates that feeding level and MF have a negative effect on milk production. It might be obvious that feed restriction reduces energy intake and available nutrients, resulting in reduced total cardiac output and decreased mammary blood flow via local rather than systemic circulation [22]. When cows are returned to 2× milking from 1× milking, there is a negative carry over effect. This might be due to the combination of reduced epithelial cells number and activity in the mammary gland [25]. Furthermore, the authors elaborated that grazing cows that is subjected to a severe, but relatively short (3 weeks) feed restriction in early lactation, the cows will continue to mobilize body reserve even after feeding of additional energy and protein diet before calving. Cows that were milked 1× over a whole lactation [24]. In addition, the effect of reduced MF or feeding level on milk solid production continue to after cows are switched back to normal intake and 2× milking [25].

INTERACTION BETWEEN BCS AT CALVING AND NUTRIENT INTAKE DURING EARLY LACTATION

BCS is a management tool for evaluating body energy reserve and mainly used for evaluating nutritional status in farm animals [28]. BCS may be assessed visually and/or by feeling the amount of body fat over the backbone, hips, and ribs and around the base of the tail and taking some account of the prominence of the pin bone [18].

Different researchers reported different results on the response of DMI to condition score at calving. The difference might be explained by the difference in the composition of the diet fed to cows in early lactation in different trials.
As body condition at calving increases, there is a reduction in DMI after calving [29]. Similarly, Garnsworthy and Jones [30] argued that as BCS at calving increases, the rate of increase in feed intake after calving decreases and the delay between peak milk yield and time of maximum food intake becomes greater. This indicates that overfed/fat cows might take more time to attain maximum intake than thin cows. Cows restrictively fed during dry period/late gestation has a higher DMI in lactation and a lower mobilization of body fat [35,31]. On the contrary, generous feeding during late gestation is responsible for gaining large quantities of body fat and the cows have lower DMI along with the propensity of mobilizing body reserves in lactation. As a result, overconditioned cows will be in NEB during early lactation as they mobilize a great deal of body reserve to support milk production [32]. However, cows with lower condition scores at calving produce a higher percentage of milk directly from feed rather than via body fat and reach positive energy balance earlier in lactation and are more efficient over the total period than cows with higher condition score [30]. However, thin cows need high-energy diets to milk well in early lactation. This is because thin cows do not have sufficient body reserve to support milk production and as a result a large reduction in milk yield might be observed. Caution is, therefore, needed when we formulate and offer diet to the cows during late gestation and early lactation. Furthermore, Kunz et al. [33] asserted that cows fed only 75% of their requirements during the final 70 days pre-calving showed faster increase in DMI immediately after calving, compared with cows fed ad libitum. Similarly, Reppiis et al. [31] showed high gain consumption during early lactation for cows that were subjected to energy underfeeding before calving compared with cows fed above requirements in the dry period.

Mammals have the ability to regulate feed intake. The regulatory mechanism helps the cows to reduce feed intake as body reserve increases, in an attempt to prevent excessive fatness [34]. In this regard, the hormone leptin might play a great role in modulating feed intake. The adipose hormone leptin is anorexigenic and acts in the hypothalamus to reduce appetite and increase energy expenditure in response to a meal in a healthy animal [35,36]. Overfed/fat animals have elevated leptin levels due to their greatly increased adipose tissue mass [35,37]. Increased leptin level, which is associated with increased body fat, results in a NEB [35,36]. It had been contended that oxidation of NEFA in the liver may reduce intake [34]. This most likely explains the lower intake observed in high-conditioned cows mobilizing more body reserves compared with thin cows in early lactation. In general, the decreased feed intake of overfed/fat animals thought to be a mechanism for regulating adipose tissue depots or physiological feedback mechanism [39].

Apart from leptin, acetate is believed to play a role in feed regulation in mammals. Stockdale [18] reviewed the presence of higher rate of fatty acid synthesis in the adipose tissue of thin cows which could result in lower blood concentration of precursors such as acetate which in turn affect appetite and food intake. Higher oxidation of acetate to CO2 in the adipose tissue of thin cows throughout the early post calving has been reported by Treacher et al. [40]. Acetate oxidation is probably the major energy source for adipose tissue in the cow and may play a role in regulating food intake by influencing acetate utilization rate. It can be concluded that high concentration of acetate in the rumen depresses intake. Dalley et al. [41] infused a 2-year-old sheep through terminal ileum and proximal colon with volatile fatty acid at a ratio of 0.80:0.15:0.05 (acetic, propionic and butyric, respectively) and found a depressed feed intake. Similarly, infusion of sodium acetate in the rumen of sheep depressed feed intake [42].

For better performance of thin and fat cows during early lactation, it has been suggested that it is better to achieve high energy concentration by the use of high-fiber concentrates with a fat supplement, rather than high starch concentrate [18]. Likewise, optimum performance in cows that are fat at calving may be achieved with high levels of undegradable dietary protein in the diet, whereas cows that are thin at calving perform best with higher levels of energy and generally do not respond to undegradable dietary protein. In general, Garnsworthy and Topp [43] contended that there appears to be no benefits from feeding cows to achieve a condition score at calving >1.5-2.0 on the 4 point scale (3.0-4.0 on the 8 point scale) if high energy complete diets are offered at ad libitum levels in early lactation.

CONCLUSIONS

Increasing the energy density of the pre-calving diet improves subsequent milk production if it alleviates a low BCS at calving and if it is accompanied by high post calving feeding. The health status of dairy cows in early lactation and their reproductive performance can be influenced by feeding pre- and post-calving through effects on body reserves at calving and NEB post-calving (Nielsen et al., 2010). Reducing MF to 1× milking in early lactation may provide benefits in labor management and farmer life style, but will result in decreased daily and total milk production. In general, temporary 1× milking has lactation long negative effect on milk and milk components yields but improved cow energy status and BCS (Phyn et al., 2014).

Thin cows have better DMI during early lactation than overconditioned cows. The lower intake by fat cows is believed to be as a result of physiological feedback mechanism. It is better to achieve high energy concentration by the use of high-fiber concentrates with a fat supplement, and optimum performance in cows that are fat at calving may be achieved with higher level of undegradable dietary protein, whereas cows that are thin at calving perform best with higher levels of energy. In general, there appears to be no benefits from feeding cows to achieve a condition score at calving >1.5-2.0 on the 4 point scale (3.0-4.0 on the 8 point scale) if high energy complete diets are offered at ad libitum levels in early lactation.

REFERENCES

12. Nicol AM, Brookes IM. The metabolisable energy requirements of

