Psoriasis is a non-infectious, dry, inflammatory (autoimmune) skin disorder. Treatment approaches include phototherapy, topical, oral and other systemic drug delivery. However, owing to the side effects and incomplete cure accompanying the oral administration as well as phototherapy, the topical route seemed to be more satisfactory for the medical team. Dermal treatment ensuring percutaneous penetration is now highly recommended in topical indications for psoriatic patients, which can be achieved using pharmaceutical carriers. Several carrier systems loaded with antipsoriatic drugs have demonstrated promising results, with some of them strictly being confined to the skin and others allowing for systemic involvement also. The evolution in this area will present a more useful and safer therapy by minimizing the drugs' degradation and loss, and increasing their bioavailability and effectiveness. Since patients require at least three topical applications for almost a 1-year period to gain health benefit, a reduction in the cost of the treatment will be of real value. A distinction of these carriers is made in the current review, to allow the choice of the most suitable pharmaceutical carrier for psoriatic patients requiring either local and/or systemic involvement.

Keywords: Skin, Topical, Novel carriers, Psoriasis

Conventional topical delivery systems for treatment of psoriasis such as creams and ointments suffer from many disadvantages, such as poor percutaneous absorption and patient’s discomfort due to greasiness and stickiness [9, 15, 17]. Lately, pharmaceutical carriers have been shown to provide a more useful antipsoriatic therapy, minimizing drug’s loss and increasing both patient compliance and drug bioavailability. Safety will be another benefit for these carriers concentrating the fraction of drug at targeted tissues, while diminishing toxic side effects [4, 13, 18]. Besides overcoming physicochemical limitations of drugs such as poor solubility and short half-lives, these pharmaceutical carrier systems act as penetration enhancers across the stratum corneum or may serve as depot for prolonged release of dermally active molecules, possibly, due to their nanometer range. They also can act as rate limiting membrane barriers for systemic absorption [17, 19]. Based on the mechanism of action of pharmaceutical carriers of antipsoriatic drugs, categorization is made in the current review, based on whether the carrier would function topically or transdermally, achieving local or systemic actions respectively. Furthermore, since almost 10% of patients require at least three topical therapy switches over a 1-year period to gain health benefit, the identification of formulation penetrability will be an aid for medical needs in psoriasis treatment.

Locally acting pharmaceutical carriers

Vesicular systems

Liposomes and niosomes

Liposomes are biodegradable, highly biocompatible spherical vesicles, composed of an internal aqueous core, suitable for loading hydrophilic drugs, surrounded by one or more natural or synthetic phospholipid layers arranged in a bilayer configuration enabling...
Liposomes represent the first generation of vesicular carriers for topical drug delivery. Both liposomes and niosomes have the ability to concentrate the entrapped drug in the skin, while reducing its presence in other unwanted tissues, thus, minimizing the loss of entrapped drug and increasing its bioavailability and efficacy. They provide therapeutic activity in a controlled manner (reservoir) for a prolonged period of time. They also protect active entities from degradation sparing the treatment costs [21].

Liposomes owe their topical penetration ability to their affinity to the keratin layer of the skin [5]. They are hypothesized to either directly penetrate the intact skin, disintegrate on the surface of the skin with penetration of individual lipid molecules in stratum corneum, adsorb on the skin surface by fusion of their bilayer with skin lipids and subsequent direct transfer of the drug to stratum corneum, or create an occlusive effect leading to enhanced drug penetration [22]. Niosomes were postulated to penetrate the skin by diffusion reforming new smaller niosomes vesicles in the skin; interact with stratum corneum by fusion or adhesion, or modify the stratum corneum structure and make it more permeable. Due to their relative large particle size and non-flexible nature, both liposomes and niosomes are mainly used for their local, rather than their systemic deposition potential and of proven histopathological safety [32, 33].

Regarding psoriasis treatment, liposomes and niosomes were utilized by Agarwal et al. [27, 28] in delivering dithranol. Knudsen et al. [29] reported the delivery of greater amount of calcipotriol through the skin using liposomes with increased deposition in the stratum corneum. Ali et al. [30] disclosed the successful clinical use of liposomal methotrexate hydrogel in localized psoriasis with no psoriatic recurrence. Nagle et al. [31] also incorporated methotrexate in menthol containing liposomal gel reporting its enhanced retention in skin appendages and improved skin penetration. Also, methotrexate loaded niosomes exhibited better clinical efficacy than marketed methotrexate gel in psoriasis treatment with high topical deposition potential and/or proven histopathological safety [32, 33]. Liposomes of retinoids showed increased photostability, and niosomes are mainly used for their local, rather than their systemic effects [4, 5, 22-24]. It was also reported that liposomes and niosomes serve as solubilisation matrix and penetration enhancers [25, 26].

SLNs and NLCs offer many advantages for the topical route by providing controlled drug release, exhibiting limited toxicity due to their physiological lipid content, increasing drug permeation through stratum corneum due to their small lipid droplet size, and ensuring an occlusive effect, due to lipid film formation on the top of the stratum corneum, for better skin hydration [37-39]. Owing to their highly lipidic and non-flexible nature, SLNs and NLCs are confined to the topical rather than the transdermal treatment of skin diseases.

As examples of using SLNs in psoriasis field, tretinoin and isotretinoin encapsulated in SLNs showed higher uptake and enhanced skin targeting effect with good stability [36, 40]. Dithranol was also successfully loaded into SLNs for potential antipsoriatic applications [38, 41]. Moreover, SLNs co-encapsulating betamethasone dipropionate and calcipotriol displayed negligible skin irritation and better skin tolerability compared to commercial ointment [42].

Similarly, NLCs were also successful in topical psoriasis treatment. NLCs encapsulating psoralen were able to minimize permeation differentiation between normal and hyper proliferative skin compared to free drug in aqueous medium [43]. Agrawal et al. [44] developed acitretin loaded NLCs which displayed higher drug deposition, improvement of therapeutic response and reduction in local side effects compared to acitretin gel. Poppe et al. [45] developed tacrolimus loaded NLCs for the treatment of psoriasis with better encapsulation efficiency, stability and enhanced skin deposition compared to the conventional product. Besides, they were also able to enhance occlusive properties, skin hydration potential, and reduce the transdermal water loss. Pinto et al. and Agrawal et al. [46, 47] prepared NLCs loaded with methotrexate, displaying higher skin penetration and better skin deposition than free methotrexate and methotrexate gel respectively. Lin et al. [48] successfully co-encapsulated the lipophilic calcipotriol and hydrophilic methotrexate showing enhanced drugs permeation and limited skin irritation. In addition to controlled release, methoxalen NLCs were of enhanced drug stability [49]. High retention of fluocinolone acetonide in skin layers following the use of NLCs was proved by Pradhan et al. [50].

Lipospheres

Lipospheres are water dispersible solid micron or submicron sized particles composed of a solid hydrophobic core containing the bioactive drug molecule stabilized by a single monolayer of phospholipid molecules [51]. They are widely used in topical delivery owing to their solid lipid matrix, causing drug release over a prolonged duration with minimal systemic absorption. They also reduce transdermal water loss due to lipid film formation on skin surface [51]. Only one report of their possible application in oral psoriasis treatment; cyclosporine lipospheres demonstrated better stability and improved bioavailability [52]. The need for lipid components during psoriasis treatment would encourage research to focus on their use.

Nanoemulsions

Nano-emulsions differ from microemulsions in that they are the same as regular emulsions with the particle size of the globules in the nanometer range. Unlike microemulsions, nanoemulsions are not formed spontaneously.

In topical field nanoemulsions improve skin hydration and drug permeation and provide low skin irritation and extended release of enclosed drugs [53, 54]. To authors' knowledge, only one attempt was made to test the efficacy of nanoemulsions in the topical treatment of psoriasis; in which Bernardi et al. [55] Developed rice bran oil nanoemulsion for possible treatment of psoriasis which was stable and showed low skin irritation based on its moisturizing activity.

Polymeric carriers

Polymeric micelles

Polymeric micelles are nano sized core/shell structures formed by self-assembly of amphiphilic block copolymers with hydrophobic
core and polyethylene glycol-hydrophilic shell in an aqueous milieu. They improve the solubilization of hydrophobic or poorly soluble drugs, provide sustained release, and protect the encapsulated drug from degradation [56].

For topical psoriasis treatment, Lapteva et al. [57] prepared methoxy-polyethylene glycol-dihexyl substituted polylactide (MPEG-dihexPLA) micelles and reported its higher efficiency for tacrolimus group to load cyclosporin A, demonstrating deep skin penetration delivery. The same polymeric micelles were also used by the former group to load cyclosporin A, demonstrating deep skin penetration delivery without concomitant systemic delivery [58].

Polymeric nano and microspheres

Polymeric microspheres are stable spherical polymer matrix system formed from naturally occurring polymers such as chitosan, collagen, albumin or cellulose, or synthetic polymers as polylactide co-glycolide (PLGA), polyactic acid or poly ε caprolactone with particle size in the micrometer range (from 1 to 1000 μm) [59]. Typically, polymeric microspheres protect the entrapped drug from degradation or inactivation on the skin surface and provide controlled release of the incorporated drug whether it was lipophilic or hydrophilic [60, 61]. Microspheres also successfully encapsulated psoralen, with proven presence in rat skin [62]. Nanospheres are analogous to microspheres only differing in size. Nanosphere drugs are either entrapped or dispersed in the polymer matrix with biodegradable or non-biodegradable polymers [4].

Regarding psoriasis treatment, Kilfoyle et al. [63] prepared tryospheres (tyrosine derived polymeric nanospheres) with encapsulated paclitaxel providing sustained drug release over 72 h in addition to achieving a reservoir of the drug in the epidermal layer. Batheja et al. [64] also confirmed the promising topical nature of tyrosine nanosphere encapsulated in a gel form.

Nanocapsules

They are nanoparticles consisting of a drug containing reservoir (cavity), surrounded by a polymeric or surfactant coat [65]. The drug may be present in a liquid form, solid form, or as a molecular dispersion in the cavity.

A successful use of nanocapsules in the topical treatment of psoriasis was attempted by Savian et al. [66] in which the nanocapsules dithranol provided reduced toxicity of the drug, encouraging its clinical use in psoriatic patients treated with dithranol to ensure their adherence to the therapy.

Pharmaceutical carriers suitable for both local and systemic use

Vesicular systems

Transfersomes

They are highly deformable and ultra flexible liposomes firstly developed by Cewc and Blume [67]. They consist of an inner aqueous core surrounded by lipid bilayers in addition to edge activators (single chain surfactants) such as Tweens, Spanes, sodium cholate or deoxycholate [23, 68].

As transdermal delivery systems, transfersome some have the advantage of being able to squeeze themselves through the intercellular regions of the stratum corneum which are less than one-tenth of their own diameter [15, 69]. They can either penetrate the skin via the intracellular or transcellular routes with destabilization of their lipid bilayer followed by an increase in their flexibility, making them more skin penetrating by diffusion following natural water gradient across the epidermis [4]. Even if skin pores are much smaller than the diameter of vesicles, transfer some are able to permeate without being ruptured, localizing high drug concentrations in the skin [24, 68, 70].

Regarding psoriasis treatment, transfer some have been shown to display three to four folds increase in permeation of methotrexate than normal liposomes [71]. In addition, Bhata et al. [72] reported the significant efficacy of tamoxifen transfersomal gel compared to the conventional hydrogel in a mouse tail model of psoriasis.

Ethosomes

They are flexible vesicular carriers composed of phospholipids, ethanol (as edge activator) and water [73]. Ethanol also provides vesicles with a flexible nature allowing them to penetrate easily into the deeper layers of skin, achieving transdermal drug delivery [19].

As transdermal delivery systems, ethosomes promote skin permeation and penetration of drugs, owing to their high ethanol concentration, reacting with the polar head groups of the skin. Thus, they play an important role as permeation enhancer by disturbing the organization of skin lipid bilayer and increasing the fluidity of stratum corneum lipids [4, 74].

Ethosomes have been used successfully in the treatment of psoriasis. Dubey et al. [75] reported better permeation to deeper skin layers and greater retention of methotrexate and enhanced transdermal flux with ethosomes compared to the marketed product. Raza et al. [76] attempted the encapsulation of tretinoin in ethosomes, which displayed better biocompatibility and efficacy than marketed product. Zhang et al. [77] compared the encapsulation of psoralen in ethosomes with that of liposomes, reporting higher transdermal flux and skin deposition with the former. Better delivery of 5-amino levulinic acid was also reported upon encapsulation in ethosomes with better delivery to the inflamed skin in hyperproliferative skin animal model than conventional products [78]. Upon incorporation in a gel, ethosomes were also proven to minimize the side effects caused by the photosensitivity of psoralen compared to conventional gel [79].

Penetration enhancer-containing vesicles (PEVs)

PEVs are analogous to transfer some, with the edge activator being replaced by a penetration enhancer such as 2-(2-ethoxyethoxy) ethanol (Transcutol®), capryl-caproyl macrogol 8 glyceride (Labrasol®), cineole and oleic acid [15,80]. This penetration enhancer has dual action as it improves vesicular fluidity and reduces the stratum corneum function [81]. Depending on the extent of deformability and the percentage of penetration enhancer, PEVs could either act as local or systemically acting dermal carrier.

The only attempt for the use of PEVs in the treatment of psoriasis was made by Srisuk et al. [6] who entrapped methotrexate in oleic acid-containing vesicles with a reported enhancement in permeability and transdermal delivery than conventional liposomes, owing to their flexible nature and their content of penetration enhancer.

Surfactant based systems

Microemulsions

Micromulsions are thermodynamically stable isotropic dispersions involving oil and water stabilized by surfactant/cosurfactant film at the interface, and are classified into o/w and w/o types. Microemulsions have the advantages of ease of formation, small droplet size and high surface area providing better attachment of drug molecules [82]. Owing to their small droplet size and their high surfactant and cosurfactant content, microemulsions have proven themselves as an important transdermally oriented carrier.

Regarding psoriasis treatment, Alvarez-Figueroa and Blanco-Mendez [83] developed methotrexate containing microemulsion, showing better drug delivery than the solution form. In addition, Sah et al. [84] developed methoxsalen loaded microemulsion achieving ten folds better deposition in skin and proven transdermal flux than the marketed product. Behera et al. [85] also developed chitosan coated methoxsalen microemulsion providing controlled release and transdermal flux of the drug across the skin. Ali et al. [86] prepared turmeric oil containing microemulsions with high stability and low irritation. Furthermore, the immunosuppressive drug mycophenolate mofetil formulated as microemulsion based hydrogel displayed complete clearance of psoriatic plaques suggesting its effectiveness [87]. Upon inclusion in a gel, Ali et al. [88] were able to use babchi oil
microemulsion for the topical treatment of psoriasis, owing to its high content of psoralen. Results showed that the aforementioned formula provided high in vivo anti-inflammatory effects.

Polymeric nanoparticles

Dendrimers

They are nanosized highly branched macromolecules with a large number of surface groups branching from a central unit, and an internal core that act as a compartment for housing drugs [89]. Drugs may rest in the central unit or interact with functional groups with electrostatic or covalent bonds with drug release achieved by enzymatic degradation or change in pH or temperature. In the topical/transdermal fields, dendrimers facilitate drug diffusion and enhance drug penetration owing to their small nanometer size. Topical and transdermal psoriasis treatment can be achieved with dendrimers, depending on their type and generation. Agrawal et al. [90] prepared dendrimers loaded with dithranol with prolongation of drug retention in the skin and greater skin permeation compared to plain drug solution. The effective conjugation of 8-methoxypsoralen with dendrimers facilitated transdermal skin permeation for PUVA (psoralen-UV-A) therapy [91].

CONCLUSION

The incidence of the autoimmune disease "psoriasis" has increased in the past few years. The conventional forms of antipsoriatic drugs used such as creams, ointments and gels are starting to become outdated as they don't provide complete cure owing to poor drug absorption and patient in compliance. In this review, we have made a survey on the pharmaceutical carriers used for antipsoriatic drugs, which were able to overcome the disadvantages encountered with the conventional forms and provide superior in overcoming the barrier properties of the stratum corneum. An emphasis on whether the pharmaceutical carrier could be used for topical or transdermal effects was made in the current manuscript. This will serve as a guide for career choice, based on the treatment rationale.

CONFLICT OF INTERESTS

The authors report no conflicts of interest.

REFERENCES

33. Abdelbary AA, Abou Ghaly MH. Design and optimization of topical methotrexate loaded niosomes for enhanced...

