

ISSN- 0975-7066

Vol 8, Issue 2, 2016

Original Article

FORMULATION AND EVALUATION OF ANTIDEPRESSANT ORODISPERSIBLE TABLETS

P. SIREESHA*1, R. KIRANJYOTHI1

Department of pharmaceutics, Oil Technological Research Institute, Anantapuram, A. P 515001 Email: sireesha.panditha@gmail.com

Received: 25 Jan 2016, Revised and Accepted: 20 Mar 2016

ABSTRACT

Objective: Orodispersible tablet formulation was proposed to be developed for fluoxetine hydrochloride taking into consideration it's physical, chemical, pharmacological and pharmacokinetic properties and was proposed to be investigated with respect to its potential to be developed into novel drug delivery system

Methods: Carrying out pre-formulation studies such as drug-polymer interaction analysis by Fourier Transform Infrared (FTIR) spectroscopy and pre-compression characterization of a physical mixture of drug and excipients. Preparation of the orodispersible tablet by using various super disintegrants like crosscarmellose, crospovidone & sodium starch glycolate. Preparation of the orodispersible tablet by using various methods like wet granulation method & sublimation method.

Results: To evaluate tablets for various physicochemical parameters such as hardness, friability, weight variation, drug content, wetting time, *in vitro* disintegration time, *in vitro* dissolution.

Conclusion: Finally concluded that the oro dispersible tablet of fluoxetine hydrochloride formulated by sublimation method by using crospovidone at 4.5% level used for depression treatment.

Keywords: Fluxetine, orodispersible tablets, Crosscarmellose, Crospovidone, Sodium starch glycolate

© 2016 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

INTRODUCTION

The performance of ODTs depends on the technology used in their manufacture. The orally disintegrating property of these tablets is attributable to the quick ingress of water into the tablet matrix, which creates porous structure and results in rapid disintegration [1, 2]. Hence, the basic approaches to develop ODTs include maximizing the porous structure of the tablet matrix, incorporating the appropriate disintegrating agent and using highly water-soluble excipients in the formulation. Fluoxetine hydrochloride is the first agent of the class of antidepressants known as selective serotonin-reuptake inhibitors (SSRIs) [3] Despite distinct structural differences between compounds in this class, SSRIs possess similar pharmacological activity.

MATERIALS AND METHODS

Materials

Fluoxetine, lactose, starch, aspartame, magnesium trisilicate, talc cross carmellose, crospovidone & sodium starch glycolate

Methods

For the following study, we are Taken captopril. Fluoxetine hydrochloride is the first agent of the class of antidepressants

known as selective serotonin-reuptake inhibitors (SSRIs) [5-7]. In this study first, we did preformulation study.

In this preformulation study, we studied about the API characterization of drug, Drug-Excipient compatibility studies, Analytical method development, and Precompression parameters.

API characterization

It is necessary to study the physicochemical properties of the bulk drug-like physical appearance, solubility, melting point, particle size, and incompatibilities [4].

Analytical method development

It is studied for knowing about the purity of the drug. It is carried out by two methods HPLC or U. V. Here we have followed U. V method [9, 10] Then we went for the formulation development.

Formulation development and evaluation

For this study, we developed 9 formulations in different ratio. The following table is shown formulation development for the present study.

Ingredients	FW1	FW2	FW3	FW4	FW5	FW6	FW7	FW8	FW9
C	(mg)								
Drug(Fluoxetine)	10	10	10	10	10	10	10	10	10
Lactose	59.5	58	56.5	59.5	58	56.5	59.5	58	56.5
Starch	20	20	20	20	20	20	20	20	20
Cross carmellose	1.5	3	4.5	-	-	-	-	-	-
Crospovidone	-	-	-	1.5	3	4.5	-	-	-
Sodium starch glycolate	-	-	-	-	-	-	1.5	3	4.5
Poly vinyl pyrolidine	5	5	5	5	5	5	5	5	5
Aspartame	3	3	3	3	3	3	3	3	3
Magnesium stearate	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Talc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Table 1: Formulation composition of orodispersible tablet of fluoxetine hydrochloride for wet granulation method

Ingredients	FS1	FS2	FS3	FS4	FS5	FS6	FS7	FS8	FS9
-	(mg)								
Drug(Fluoxetine)	10	10	10	10	10	10	10	10	10
Lactose	54.5	53	51.5	54.5	53	51.5	54.5	53	51.5
Starch	20	20	20	20	20	20	20	20	20
Camphor	5	5	5	5	5	5	5	5	5
Cross carmellose	1.5	3	4.5	-	-	-	-	-	-
Crospovidone	-	-	-	1.5	3	4.5	-	-	-
Sodium starch glycolate	-	-	-	-	-	-	1.5	3	4.5
Poly vinyl pyrollidine	5	5	5	5	5	5	5	5	5
Aspartame	3	3	3	3	3	3	3	3	3
Magnesium stearate	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Talc	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5

Table: 2 Formulation composition of orodispersible tablet of fluoxetine hydrochloride for sublimation method

RESULTS AND DISCUSSION

Standard graph of Fluoxetine hydrochloride in 0.1N HCl

Table: 3 Data of the standard calibration curve of fluoxetine hydrochloride, Medium 0.1N HCl; λ_{max} =226 nm

Concentration (µg/ml)	Absorbance at 226 nm
0	0
2	0.066
4	0.186
6	0.242
8	0.333
10	0.418
12	0.505
14	0.582
16	0.669
18	0.757
20	0.836

Fig. 1: Standard graph of fluoxetine hydrochloride. Medium 0.1N HCl; $\lambda_{max}{=}226~nm$

Preformulation studies

Fourier transforms infrared spectroscopy (FTIR)

Table 4: Observed frequencies in the FTIR spectra of pure drug (fluoxetine hydrochloride) and physical mixture with their assignments

Frequency observed in IR	Assignments
spectrum (cm ⁺)	
3440.7	Amines stretching vibration (N-H)
1070.1	(N-C) stretching
2960.3	Alkane (C-H stretching)
3014.5	Aromatic (C-H stretching)
1518.2	(C=C stretching)
1242	Phenoxy stretching vibration (C-O-
	Aromatic group)
1331	Halide stretching vibration (C-F)
1108	Fingerprint absorption bands
1050	
842	
699	
588	
526	

Powder characterization

The powder mixtures of different formulations were evaluated for angle of repose, Hausner ratio, and compressibility index and their values were shown in (table 6, 3).

Evaluation of tablets

The Oro dispersible tablets of different formulations were evaluated for Weight variation, Hardness, Thickness, Friability test, Drug content and their values were shown in (table 6, 4).

Fig. 2: FTIR spectra of fluoxetine hydrochloride. (Pure drug)

Fig. 3: FTIR spectra of physical mixture containing drug and Cross carmellose

Fig. 4: FTIR spectra of physical mixture containing drug and Cross povidone

Fig. 5: FTIR spectra of physical mixture containing drug and Sodium starch glycolate

Fig. 6: FTIR spectra of physical mixture containing drug and starch

Fig. 7: FTIR spectra of physical mixture containing drug and PVP

Fig. 8: FTIR spectra of physical mixture containing drug and lactose

Fig. 9: FTIR spectra of drug formulation

Fahlo 5, Flow	nronortioc	of the final	nowdor	hlond
abic 5. 110 w	properties	of the mai	powuci	Diciiu

Formula code	Bulk density	Tapped density(gm/cm ³)	Carss index	Angle of repose	Hausners ratio
	(gm/cm ³)		(%)		
FW1	0.341±0.04	0.422±0.04	12.46±1.87	27 °.11′±0.065	1.14±0.01
FW2	0.357±0.03	0.423±0.06	9.50±1.23	26 °.12′±0.043	1.10±0.03
FW3	0.365±0.12	0.405±0.06	12.75±1.98	28 °.21′±0.032	1.14±0.01
FW4	0.333±0.32	0.403±0.02	11.11±0.05	28 °.32′±0.05	1.12±0.03
FW5	0.371±0.05	0.417±0.05	13.08±0.42	27 °.09′±0.06	1.15±0.02
FW6	0.370±0.06	0.467±0.09	12.69±0.05	29 °.12′±0.03	1.15±0.03
FW7	0.364±0.06	0.467±0.16	10.61±0.76	27 °.34'±0.07	1.14±0.06
FW8	0.369±0.09	0.428±0.14	10.73±0.32	30 °.20'±0.04	1.11±0.02
FW9	0.375±0.05	0.408±0.31	12.55±0.64	26 °.10′±0.08	1.12±0.03
FS1	0.378±0.01	0.403±0.87	11.21±0.46	27 °.22'±0.03	1.14±0.05
FS2	0.339±0.07	0.402±0.54	11.81±0.97	27 °.31′±0.03	1.17±0.06
FS3	0.357±0.12	0.413±0.07	12.09±0.97	28 °.08′±0.07	1.13±0.03
FS4	0.378±0.14	0.427±0.34	9.95±0.13	29 °.32′±0.07	1.12±0.02
FS5	0.369±0.15	0.431±0.24	11.13±0.1	31 °.41′±0.08	1.08±0.01
FS6	0.381±0.21	0.418±0.65	11.28±1.09	29 °.28′±0.09	1.12±0.02
FS7	0.384±0.06	0.422±0.06	11.57±1.65	28 °.21′±0.04	1.21±0.05
FS8	0.344±0.25	0.413±0.07	11.75±0.05	29 °.08′±0.03	1.32±0.02
FS9	0.362±0.14	0.395±0.03	12.53±0.06	27 °.11′±0.05	1.14±0.05

Data represents mean±SD (n=3)

Table 6: Physical evaluation parameters of orodispersible tablets

Formula code	Weight variation(mg)	Hardness (Kg/cm ²)	Thickness (mm)	Friability (%)	Drug content (%)
FW1	99.4±0.6	3.1±0.1	2.20±0.01	0.41±0.03	95.9±0.07
FW2	98.9±0.81	3.2±0.12	2.22±0.03	0.57±0.04	98.6±0.06
FW3	100.05±0.85	3.3±0.15	2.23±0.035	0.47±0.02	98.1±0.05
FW4	99.6±0.37	3.1±0.13	2.12±0.03	0.34±0.035	97.6±0.02
FW5	100.3±0.53	3.2±0.14	2.20±0.015	0.42±0.03	97.8±0.07
FW6	99.5±0.97	3.4±0.1	2.11±0.03	0.35±0.015	99.1±0.02
FW7	100.3±0.88	3.2±0.17	2.28±0.035	0.46±0.034	95.4±0.04
FW8	99.7±0.51	3.1±0.1	2.30±0.03	0.57±0.015	96.4±0.05
FW9	98.8±0.88	3.2±0.15	2.29±0.04	0.66±0.026	97.1±0.052
FS1	99.5±1.08	2.5±0.21	2.34±0.052	0.62±0.04	96.4±0.041
FS2	100.4±0.65	2.7±0.16	2.37±0.05	0.59±0.05	98.6±0.039
FS3	100.7±1.07	3.0±0.1	2.49±0.05	0.55±0.03	97.1±0.05
FS4	98.8±1.23	2.8±0.2	2.25±0.036	0.5±0.026	99.1±0.045
FS5	99.2±0.19	2.7±0.21	2.31±0.03	0.54±0.03	98.1±0.061
FS6	98.7±0.89	3.1±0.32	2.24±0.07	0.44±0.032	98.3±0.042
FS7	100.3±1.21	2.7±0.08	2.45±0.06	0.61±0.03	96.9±0.061
FS8	98.01±1.46	2.8±0.16	2.51±0.03	0.65±0.04	97.6±0.04
FS9	100.3±0.78	2.7±0.17	2.49±0.04	0.61±0.031	97.8±0.05

Data represents mean±SD (n=3)

Disintegration time

The Orodispersible tablets of disintegration time were evaluated, and their values were shown in (table.6.5. and in fig. 6.10).

Table 7: Disintegration times of orodispersible tablets

Formula code	Disintegration time (sec)
FW1	86±4.35
FW2	76±2.51
FW3	72±1.5
FW4	75±1.4
FW5	43±1.15
FW6	35±3.6
FW7	106±4.09
FW8	97±3.6
FW9	86±3.65
FS1	64±4.5
FS2	45±2.51
FS3	41±2
FS4	25±3.05
FS5	20±1.08
FS6	13±1.5
FS7	86±3.7
FS8	74±4.3
FS9	65±3.6

Data represents mean±SD (n=3)

Fig. 10: Disintegration time profile of orodispersible tablets

Before wetting

Wetting time

Wetting time of dosage form is related to the contact angle. The Orodispersible tablets of disintegration time were evaluated, and their values were shown in (table.6.6. and in fig. 6.11 and 6.12).

Table 8: Wetting time of orodispersible tablets

Formula code	Wetting time (sec)	
FW1	82±2.3	
FW2	71±3.1	
FW3	65±2.45	
FW4	59±3.54	
FW5	38±4.12	
FW6	30±1.23	
FW7	94±5.2	
FW8	89±3.21	
FW9	80±1.8	
FS1	51±1.32	
FS2	40±1.42	
FS3	37±1.23	
FS4	23±1.54	
FS5	16±2.32	
FS6	10±1.23	
FS7	75±1.24	
FS8	65±1.45	
FS9	54±2.34	

Data represents mean±SD (n=3)

After wetting

Fig. 12: Photograph of wetting of oro dispersible tablets

In vitro dissolution studies

Table 9: Cumulative percent drug release of formulation with cross carmellose as super disintegrant. Medium= 0.1N HCl, λ_{max} =226 nm

Time(min)	FW1	FW2	FW3
5	51.5±0.87	53.3±0.98	57.1±0.57
10	58.3±0.77	60.3±1.04	64.5±0.98
15	67.2±0.98	71.4±0.82	72.3±0.67
20	73.4±1.07	76.3±1.18	79.3±1.67
30	79.3±0.89	81.3±0.87	85.9±1.34
45	82.3±1.06	84.3±0.73	88.5±0.98
60	85.2±0.75	87.5±0.65	91.5±0.85

Data represents mean±SD (n=3)

110 100 90 %Cumulative drug release 80 70 60 - FW4 50 FW5 40 ----- FW6 30 20 10 0 0 5 10 15 20 30 45 60 Time(mts)

Fig. 13: Cumulative % drug release of orodispersible tablets incorporated with cross carmellose Vs Time, Medium= 0.1N HCl, λ_{max} =226 nm

Fig. 14: Cumulative % drug release of orodispersible tablets incorporated with Crospovidone Vs Time, Medium= 0.1N HCl, λ_{max} =226 nm

Table 10: Cumulative percent drug releases of formulations with Crospovidone as super disintegrant. Medium= 0.1N HCl, λ_{max} =226 nm

Time(min)	FW4	FW5	FW6
5	58.1±0.87	63.2±0.97	67.5±0.87
10	64.4±0.93	69.7±1.38	72.3±0.53
15	70.5±0.65	74.7±0.67	79.6±1.25
20	74.5±0.98	79.4±1.67	84.5±0.76
30	78.3±1.07	86.8±0.65	92.3±1.38
45	82.1±0.89	92.3±0.98	99.4±0.67
60	87.3±1.46	97.5±0.77	-

Data represents mean±SD (n=3)

Table 11: Cumulative percent drug releases of formulations with sodium starch glycolate as super disintegrant. Medium= 0.1N HCl, λ_{max} =226 nm

Time (min)	FW7	FW8	FW9	
5	50.8±0.97	52.5±1.53	56.3±1.65	
10	57.3±0.87	59.5±0.65	62.8±0.98	
15	65.5±1.03	68.3±0.97	71.4±0.47	
20	71.6±0.63	75.8±0.76	78.3±1.42	
30	77.4±0.99	80.3±1.45	82.6±0.95	
45	80.6±1.42	83.1±0.63	85.9±0.86	
60	83.4±0.86	86.8±0.99	90.4±1.45	

Data represents mean±SD (n=3)

Table 12: Cumulative percent drug releases of formulations with Cross carmellose as super disintegrant, Medium= 0.1N HCl, λmax=226 nm

Time (min)	FS1	FS2	FS3	
5	60.3±0.43	64.3±0.64	67.5±0.83	
10	68.6±0.93	70.9±0.46	71.7±0.93	
15	73.6±1.36	76.3±0.82	78.3±0.78	
20	78.4±0.75	80.2±0.93	85.9±0.63	
30	81.3±0.78	85.6±0.62	91.3±1.26	
45	87.5±0.86	92.4±0.87	99.3±0.73	
60	94.1±0.93	99.1±1.07	-	

Data represents mean±SD (n=3)

Fig. 15: Cumulative % drug release of orodispersible tablets incorporated with sodium starch glycolate Vs Time, Medium= 0.1N HCl, λ_{max} =226 nm

The oro dispersible tablets prepared by sublimation method FS-1 to FS-9 by using super disintegrates were evaluated for *in vitro* drug

release behavior, and the results of the formulations were expressed in (tables 6.10-6.12).

Fig. 16: Cumulative % drug release of orodispersible tablets incorporated with cross-carmellose Vs Time, Medium= 0.1N HCl, λ_{max} =226 nm

Time (min)	FS4	FS5	FS6
5	69.8±0.88	72.3±0.72	78.9±0.91
10	75.7±0.93	80.3±0.67	89.3±0.85
15	78.6±0.76	88.7±0.94	99.5±0.95
20	81.3±0.83	95.4±0.76	-
30	88.6±0.67	98.9±1.12	-
45	92.4±1.04	-	-
60	99.3±0.95	-	-

Data represents mean±SD (n=3)

Table 14: Cumulative percent drug releases of formulations with sodium starch glycolate as super disintegrant, Medium= 0.1N HCl, λ_{max} =226 nm

Time (min)	FS7	FS8	FS9	
5	59.8±0.96	61.4±1.07	65.3±0.84	
10	65.8±0.45	67.3±0.87	70.4±0.73	
15	71.9±1.13	74.8±0.97	78.3±0.67	
20	77.6±0.99	78.8±0.87	83.2±0.68	
30	80.4±0.82	84.9±0.73	90.5±0.56	
45	85.3±0.95	90.3±0.75	98.9±0.86	
60	92.5±0.86	96.3±0.98	-	

Data represents mean±SD (n=3)

Fig. 17: Cumulative % drug release of orodispersible tablets incorporated with Cross povidone Vs Time, Medium= 0.1N HCl, λ_{max} =226 nm

Fig. 18: Cumulative % drug release of orodispersible tablets incorporated with sodium starch glycolate Vs Time, Medium= 0.1N HCl, λ_{max} =226 nm

Fig. 19: Comparison of cumulative % drug release of oro dispersible tablets incorporated with Cross povidone Vs Time, Medium= 0.1N HCl, λ_{max} =226 nm

Model fitting data for drug release

Table 15: Kinetic model fitting data for all the formulations prepared by wet granulation method

Batch	Zero order	First order	
FW1	0.820	0.913	
FW 2	0.794	0.913	
FW 3	0.823	0.941	
FW 4	0.894	0.971	
FW 5	0.938	0.984	
FW 6	0.958	0.986	
FW 7	0.831	0.918	
FW 8	0.811	0.917	
FW 9	0.838	0.952	

Table 16: Kinetic model fitting data for all the formulations prepared by sublimation method

Batch	Zero order	First order	
FS1	0.921	0.976	
FS2	0.956	0.997	
FS 3	0.951	0.981	
FS 4	0.964	0.989	
FS5	0.910	0.982	
FS6	0.991	0.998	
FS7	0.918	0.972	
FS 8	0.926	0.974	
FS 9	0.961	0.931	

CONCLUSION

Oro dispersible tablet of fluoxetine hydrochloride prepared using various concentrations (1.5%, 3% & 4.5%) of super disintegrates like crosscarmellose, crospovidone, sodium starch glycolate by wet granulation method & sublimation method. The preformulation studies by FTIR confirmed no interactions between drug and polymers. The prepared formulations were evaluated for the pre-compression parameters & the values were within prescribed limits and indicated good free flowing properties. The physical parameters were found satisfactory & within the limits. Upon comparison sublimation method was showed good results for disintegration time, wetting time & in vitro drug release studies because sublimation of camphor to increase the porosity of the tablets. The tablets prepared with crospovidone at 4.5% concentration (FS-6) by sublimation method was found to be best formulation as it exhibited satisfactory physical parameters, least disintegration time (13 sec.), wetting time (10 sec.) & highest % drug release (99.5%) in 15 min. The drug release pattern from the optimized formulations was best fitted to first-order kinetics.

AKNOWLDGEMENT

We would like to thank our Director sir and other teaching and nonteaching faculty who help to carry out this research in the institution.

CONFLICT OF INTERESTS

Declare none

REFERENCES

- Chien YW. Novel drug delivery systems. 2nd ed. New York-Marcel Dekker Inc; 1992.
- Indurwade NH, Rajyaguru TH, Nakhat PD. Novel approach-fast dissolving tablets. Indian Drug 2002;39:405-9.
 Kuchekar BS, Atul, Badhan C, Mahajan HS. Mouth dissolving
- Kuchekar BS, Atul, Badhan C, Mahajan HS. Mouth dissolving tablets: a novel drug delivery system. Pharm Times 2003;35:7-9.
- Allen LV, Wang B. Particulate support matrix for making a rapidly dissolving tablet, US Patent 5595761; 1997.
- Bogner RH, Wilkosz MF. Fast-dissolving tablets: U. S. Pharmacist. A Jobson. Publication; 2010.
- Habib W, Khankari RH, Hontz J. Fast-dissolving drug delivery system. Crit Rev Ther Drug Carrier Syst 2000;17:61-72.
- Reddy LH, Ghosh B, Rajneesh. Fast dissolving drug delivery systems: a review of the literature. Indian J Pharm Sci 2002;64:331-6.
- Gupta A, Mishra AK, Gupta V, Bansal P, Singh R, Singh AK. Recent trends of fast dissolving tablet - an overview of formulation technology. Int J Pharm Biol Arch 2010;1:1–10.
- 9. Vollmer, Paolo Galfetti. Rapid film: oral thin films (OTF) as an innovative Drug Delivery System and Dosage; 2007.
- Bodmeier R. Darreichungsform zur application in korperoffnungen. German Patent; 1999.
- Pandit AP, Joshi SB. Formulation development of chewing gum as a novel drug delivery system for dilitazem hydrochloride. Indian Drug 2006;43:725-72.
- 12. Dobetti L. Fast melting tablets: developments and technologies. Pharm Technol Drug Delivery 2001;44-50.
- Fix JA. Advances in quick-dissolving tablets technology employing Wow tab. In: IIR Conference on Drug Delivery Systems; 1998.