A REVIEW ON PALMYRA PALM (BORASSUS FLABELLIFER)

VEDA PRIYA GUMMADI1, GANGA RAO BATTU2, KEERTHANA DIYYA M. S3, KIRAN MANDA4

* A. U College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, A. P, India 530003, 1,2,3 A. U College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, A. P, India
Email: gummadi.veda88@gmail.com

Received: 11 Feb 2016, Revised and Accepted: 19 Mar 2016

ABSTRACT
The medicinal plants have very important role in the health of human beings as well as animals. India is the largest producer of medicinal plants. One such plant, Borassus flabellifer L., belongs to family Arecaceae, commonly known as Palmyra palm is a native of tropical Africa but cultivated throughout India. Traditionally different parts of the plant such as root, leaves, fruit, and seeds are used for various human disorders. Leaves are used for thatching, mats, baskets, fans. Flowers of B. flabellifer were investigated for analgesic and antipyretic effects, anti-inflammatory activity, haematological, biochemical parameters, and immunosuppressant property. The different parts of the plant are being used for medicinal properties like anthelmintic and diuretic. The fruit pulp of B. flabellifer has been used in traditional dishes and the sap, has been used as a sweetener for diabetic patients. Phytochemical studies of the plant revealed the presence of spirostane-type steroid saponins; steroidal glycoside also contains a bitter compound called flabelliferrins. Although investigations have been carried out a lot more can still be explored, exploited and utilized. The present review highlights the phytochemical and pharmacological studies including folklore medicinal uses of this plant.

Keywords: Borassus flabellifer, Traditional uses, Phytochemistry, Pharmacology.

INTRODUCTION
Plants have been used for health and medical purposes for several thousands of years. Medicinal plants play a key role in the human health care system. Knowledge on the medicinal plants provides a new way for modern drugs development [1]. Herbal medicines are in great demand in the developed world of primary health care because of their safety, efficacy and lesser side effects. Out of these, the real medicinal value of over 4,000 plants is either little known or unknown to the mainstream population [2]. Herbal medicines have become more sensitive to unwanted effects over synthetic medicines which led to the increasing demand for herbal resources and awareness for maintaining quality and purity of raw materials [3]. Herbal medicines are popular remedies for diseases used by a vast majority of the world’s population [4]. The healing properties of many herbal medicines have been recognized in many ancient cultures [5]. In this scenario, detailed review of this plant Borassus flabellifer has been discussed.

Classification [6]
Kingdom: Plantae
Sub-Kingdom: Tracheobionta
Superdivision: Spermatophyta
Division: Magnoliophyta
Class: Liliopsida
Subclass: Arecidae
Order: Arecales
Family: Arecaceae
Genus: Borassus L.
Species: Borassus flabellifer L.
Synonyms [7]
Wine Palm, longer palm, lontar, palmyra, toddy palm.
Vernacular names [8, 9]
Hindi: Taad
Tamil: Talam
Telugu: Tatischettu
Malayalam: Karimpana
Bengali: Taala
Kannada: Olegari
Sanskrit: Taalah

Botanical description
Borassus flabellifer L., belongs to family Arecaceae, commonly known as Palmyra palm is a native of tropical Africa but cultivated and naturalized throughout India [10]. It is a robust tree and can live for more than 100 y and reach a height of 30 metres (98 ft), with a canopy of green-bluish leaves with several dozen fronds spreading 3 m (9.8 ft) across. Leaves are used for thatching, mats, baskets, fans, hats, umbrellas, and base of young leaf stalks is used for straining the Toddy and for making torches [11]. Flowers of B. flabellifer were investigated for analgesic and antipyretic effects [12] anti-inflammatory activity, haematological and biochemical parameters [13, 14] immunosuppressant property [15]. Pellets of B. flabellifer Linn. showed a significantly reduced capacity to mount a delayed-type hypersensitivity (DTH) [16] and flour from the young shoots of the B. flabellifer tested for mutagenicity [17], mitogenic activity [18], neurotoxic effect [19]. The fruit measures 4 to 7 inches in diameter; the fruits are large and fibrous, containing usually three nuts like portions each of which encloses a seed [20].

The stem of the leaves has thorny edges. Male inflorescence constitutes spirostane-type steroid saponins like borassosides and diascin. It also contains 20 known steroidal glycosides [21] and carbohydrates like sucrose [22]. It also contains a bitter compound called flabelliferrins; these are steroidal saponins. B. flabellifer contains gums, albuminoids, fats and the fresh pulp is reportedly rich in vitamins A and C [23]. The fresh sap is a good source of vitamin B-complex [24].

The different parts of the plant are being used for medicinal properties like anthelmintic and diuretic [25, 26]. The fruit pulp of B. flabellifer has been used in traditional dishes and the sap, has...
been used as a sweetener for diabetic patients [27]. Borassus is a genus of six species of fan palms, fruits are eaten either roasted or raw, and the young, jellylike seeds are also edible [28].

Phytochemistry

Phytochemical screening was performed in all the extracts [29]. Alkaloids test was performed by Mayer's tests, amino acids by ninhydrin, carbohydrates by barfoed's and fehling tests, flavonoids by FeCl₃, glycosides by Legal test, saponin by alcoholic vanillin test, tannins by FeCl₃ and lead acetate & triterpenoids by Liberman-Burchard's test [30, 31]. The tests for tannins, phenols, were also carried out as per standard protocols.

Borassus flabellifer contains albuminoids, fats and the fresh pulp is reportedly rich in vitamins A and C [32]. The fresh sap is reportedly a good source of vitamin B-complex [33]. Male inflorescence constitutes spirostane-type sterol saponins like borassosides and dioscin [34]. It also contains 20 known steroidal glycosides and carbohydrates like sucrose. It also contains a bitter component called flavelliferins; these are steroidal saponins [35]. 28 chemical constituents have been identified from ethanol root extract of Borassus flabellifer by Gas Chromatogram-Mass spectrometry (GC-MS) analysis namely 2-Furannemthanol, Propane, 1-(1-methoxyethyl), 2-Cyclopenten-1-one, 2-hydroxy-, 2,4-Dihydroxy-2,5-dimethyl-3-[2H]-Furan-3-one, Glycerin, 1,3-Propanediolamine, 1,2-Propanediol 2-acetate, Butane, 1-(ethenyloxy)-3-methyl-, Propane, 1,1-diethoxy, 1H-Imidazole-4-carboxamide, 5-amino-, 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, Resorcinol, Phenol, 2,6-dimethoxy-, 2-Cyclopenten-1-one, 2-hydroxy-, 2,4-Dihydroxy-2,5-dimethyl-3-[2H]-Furan-3-one, Glycerin, 1,3-Propanediolamine, 1,2-Propanediol 2-acetate, Butane, 1-(ethenyloxy)-3-methyl-, Propane, 1,1-diethoxy, 1H-Imidazole-4-carboxamide, 5-amino-, 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-, Resorcinol, Phenol, 2,6-dimethoxy-, 6H-Purin-6-one, 2-amino-1,7-dihydro-6H-Purin-6-one, 2-amino-1,7-dihydro-, 1,4-Benzenedioli, 2-methoxy-, Phenol, 3,4-dimethoxy, Benzene, 1,1-[5-dimethyl-4-hexyl]-4-methyl-, Phenol, 4-[2-(dimethylamino)ethyl]-1-Butanol, 2-amino-, 3-Hydroxy-4-methoxybenzoic acid, Phenol, 3,4,5-trimethoxy-, Phenol, 5-(1,5-dimethyl-4-hexyl)-2-methyl-, (R), 7H-Fur[3,2-g] benzoopyran-7-one, n-Hexadecanoic acid, Pentoenic acid, 10-undecenyl ester, Octadecanoic acid [36].

Microscopical studies

A thin transverse section of the fresh root of Borassus flabellifer was taken using microtome and studied. Phluoroglicin and hydrochloric acid in the ratio 1:1 was used as a stain and mounted on a glass slide and focused using a microscope [37]. The outermost layer was found to be the rhizodermis. It was made up of thin-walled, rectangular parenchymatous cells which were arranged compactly without intercellular spaces. Exodermis was found beneath the epidermis and composed of two to three layers of sclerified parenchyma. The cortex was wide, extensive and made up of several rows of thin walled parenchyma showing intercellular spaces. Endodermis was found throughout the powder.

Sclerified parenchyma was found scattered in the powder. Xylem vessels were found to be lignified, pitted walls and with spiral arrangements [39]. Fibers of phloem were found to be lignified with a lumen in it. Calcium oxalates were present in abundance and were of prismatic and rectangular in shape. Starch grains present were circular to oval in shape. Polygonally shaped parenchyma cells were found throughout the powder.

Determination of physicochemical properties

Total ash, acid insoluble ash and water soluble ash of Borassus flabellifer root was determined by standard methods. The crude fiber content, protein content, alcohol soluble extractive value, water soluble extractive value, chloroform soluble extractive value and petroleum ether soluble extractive values [40] were evaluated. Fluorescence analysis under ultraviolet light after treatment with various chemical and organic reagents was determined [41, 42].

Pharmacological actions

Anti-inflammatory activity

Anti-inflammatory activity was evaluated using acute and chronic models like: carrageenan-induced paw oedema like cotton pellet induced granuloma and carrageenan-induced air-pouch model in rats for the ethanol extract of male flowers. The animals were divided into four groups (n = 6). Group I served as Control received the vehicle only (1% Carboxymethylcellulose, CMC, 10 ml/kg p. o.). Group II served as Standard, received Diclofenac Sodium at a dose of 100 mg/kg b.w. Group III and IV served as a test, received ethanol extract at doses of 150 and 300 mg/kg b.w. p. o. respectively [43].

Antiarthritic activity

The ethanolic extract of male flowers (inflorescences) of Borassus flabellifer L. (Arecaeaceae), the extract at doses 200 mg/kg b.w. and 400 mg/kg b.w. and diclofenac sodium (standard) at 100 mg/kg b.w. showed significant anti-inflammatory when compared to control (p<0.0001) [44].

Antibacterial activity

The antibacterial activity of methanol extract of Borassus flabellifer L. (Arecaeaceae) was screened for anti-arthritic potential of the extract by Freund's Complete Adjuvant (FCA) induced polyarthritis. Rats were injected, 0.1 ml of FCA into the subplantar region of the right hind paw. Paw volume was measured by dislocation of the water column in a Plethysmometer. All the animals received either extract or diclofenac sodium or vehicle (1% CMC) orally depending upon their respective grouping for 21 consecutive days from the day of FCA injection. On 21st day, rats were anaesthetized using diethyl ether and oedematous tissues were isolated from the injected hind paw and were assayed for hydroxyproline [45], hexosamine [46, 47] and total protein content [48]. Blood was withdrawn from retro-orbital plexus of all the groups, and various haematological, and biochemical parameters were estimated.

Cytotoxic activity

The seed coat of Borassus flabellifer extracts was tested for inhibitory effect on HeLa Cell Line. The cytotoxicity of Borassus flabellifer on HeLa cell was evaluated by the MTT assay. In concentration range between 32 μg/ml to 750 μg/ml Borassus flabellifer were administered at different concentrations viz., 32, 64, 128, 256, 500 and 750 μg/ml and found that the growth of the HeLa cells was significantly inhibited [49].

Antalgic activity

The antalgic activity of methanol extract of Borassus flabellifer L. (Arecaeaceae) seed coat (soft outer shell) was studied by agar diffusion method in vitro. The antiallergic potential was examined against Gram-positive bacteria, i.e., Staphylococcus aureus, Bacillus subtilis and Gram-negative bacteria, i.e., Klebsiella pneumonia and Serratia marcescens [50]. The methanol extract of the seed coat has shown consistently significant inhibitory activity on different bacterial species tested. Furthermore, the minimum inhibitory concentration studies carried out by broth dilution assay and found the MIC ranged between 100 μg to 1 mg/ml implying the significance of antibacterial activity of Borassus flabellifer.
Antipyretic activity

Antipyretic activity was measured by slightly modifying the method described by Adams et al. [54]. The ethanolic extract of male flower (inflorescences) of *Borassus flabellifer* L (Areaceae) was tested for antipyretic activity. There was a significant dose-dependent inhibition of both phases of the formalin-induced pain response in mice. Tested on yeast-induced pyrexia in rats, BFEE significantly (P<0.0001) reversed hyperthermia at either dose.

Hypoglycemic activity

The hypoglycemic effects were investigated in the alcoholic extract of *B. flabellifer* in normal and diabetic rats. Diabetes was induced in rats by single dose administration of alloxan (120 mg/kg, i.p.) or by injecting dexamethasone (10 mg/kg, i.p.) for 10 d in normal rats, (100, 200 and 400 mg/kg) had significantly decreased the blood glucose level in a dose-dependent manner after repeated administration for 7 d. In alloxan induced diabetic rats, extract had decreased blood sugar level and improved glucose tolerance in alloxan induced diabetic rats at the end of 1st, 2nd, 3rd and 4th week after extract treatment. However, the insulin levels of extract treated group did not significantly change after 28 d treatment with the extract.

Antioxidant activity

The fruits of *Borassus flabellifer* Linn. belonging to family Areaceae reported to be possess the antioxidant activity. The extracts have also been evaluated for antioxidant activity by using in vitro methods DPPH (2, 2-Diphenyl-1-picyrlhydrazi) and ABTS (2, 2- azinobis (3-ethylbenzo-thiazoline-6-sulfonic acid) assay). The effect of the plant extract of the DPPH was estimated according to the method of Hou et al. with minor modification. ABTS diammonium salt radical cation decolorization test was performed using the spectrophotometric method of pellegrini et al. [55]. The root of *B. flabellfera* was investigated for antioxidant activity by the phospohomolybdenum method according to the procedure of Prieto et al. Then the absorbance of the solution was measured at 695 nm using a spectrophotometer against blank after cooling to room temperature [56]. The free radical scavenging capacity of the extracts was determined using DPPH Serial dilutions were made and the absorbance was read at 515 nm using a spectrophotometer. Ascorbic acid was used as a standard. The inhibition curve was plotted, and IC50 values were calculated [57, 58]. The reducing power was determined according to the method previously described by Oyaizu. The absorbance was measured at 700 nm. Ascorbic acid was used as a reference standard. Phosphate buffer (pH) was used as a blank solution [59]. The total antioxidant activity of ABTS radical scavenging assay the three extracts was evaluated according to the decolorization of the ABTS radical cation (ABTS+ as percentage inhibition by Re et al. The absorbance was measured at 734 nm [60]. The ability of the extract to reduce ferric ions was determined using the FRAP assay developed by Benzie and Strain [61] [1996]. Appropriate dilutions of extracts were prepared, and 100 μl was mixed to 900 μl of FRAP reagent, vortexed and incubated at 37°C for 4 min. The absorbance was measured at 593 nm and reported as BHT equivalents (μg 100 mg-1 EY).

Determination of the MIC of the methanol extracts by broth dilution assay

The medium containing different concentrations of methanol extract of seed coat of *Borassus flabellifer* viz, 10, 1, 0.1, 0.01, 0.001 mg/ml prepared by serial dilution. After inoculation, the tubes were incubated for 24 h at 37 °C. The MIC of each sample was determined by measuring the optical density in the spectrophotometer at 620 nm and compared the result with those of the non-inoculated broth [62].

CONCLUSION

*Borassus flabellifer* is a medicinal plant with innumerable medicinal qualities for all parts used since ancient times. Besides the plant having traditional uses it is also used for people who make their living from this tree using its wood, fruits, sap, stems, petals and leaves to process a variety of food products, beverages, furniture, building materials, and handicrafts. In this review, an attempt was made to provide traditional uses and pharmacological aspects of *Borassus flabellifer*, a medicinal plant native to Southeast Asia. Furthermore, a detailed and systematic approach can be done in exploiting and identifying the phytopharmacology to explore in knowing the maximum potentiality of the plant which will be useful to mankind.

ACKNOWLEDGMENT

The authors were thankful to A. U College of Pharmaceutical Sciences, Andhun University for providing constant encouragement and support and for all the necessary laboratory facilities throughout our work.

CONFLICT OF INTERESTS

Declare none

REFERENCES

37. Khandelwal RK. Practical pharmacognosy techniques and experiments. 9th ed. (Nirali Prakashan, Pune); 2002. p. 146-60.