INTRODUCTION

Cancer is one of the major diseases in the world causing mortality around the world. Cancer is the uncontrolled proliferation of the cells in any part of the body causes bulge of organ or tumor of the cells, which are not advantage to the body. The habitually affecting parts of the body are mainly lungs, liver, cervical, breast, stomach, oral, etc [1]. The cancer spreads through the metastasis from affecting part of the body to other parts. Lung cancer and skin cancer are two main cancers affecting the humans on their habitual conditions. Lung cancer is mainly due to smoking, secondhand smoke, exposure to toxins, etc [2, 3]. Skin cancer due to carcinogens, smoking, chronic and subchronic wounds, use of immunosuppressive drugs [4, 5]. At present, chemotherapy is the usually use treatment for cancer includes alkylating agents, antimitabolites, antimutator antibiotics, platinum analogs, all may indirectly leads skin or lung cancer and undesirable side effects on their long-term use in treatment. So, there is a necessity to identify the new molecules for the treatment of cancer with low prices, high efficient curing, less side effects. The natural medicinal plants have been using in treatment for different diseases including cancer since olden days [6]. But there is no scientific evidence on some medicinal plants of their biological activities. In this point of view, we aimed the present study to evaluate the in vitro cytotoxicity activity of some traditional medicinal plants of India [7, 8] on lung and skin cancer cell lines.

MATERIALS AND METHODS

Plant material collection and preparation of extracts

Buchanania axillaris Desr, Taminladia ulignosa Retz, Phaseolus semierectus L and Stylosanthes fruticosa Retz were collected from of the Thalakona region, Chittoor district, India. The plant specimen was authenticated by Dr. K. Madhava Chetty, Department of Botany, Sri Venkateswara University, Tirupati. The plant materials were shade dried, then powdered in the mill and extracted separately with methanol using soxhlet extraction process.

Cell lines

A549 cell line for lung cancer and A431 cell lines for skin cancer were used for the present study.

Cytotoxic assay

MTT assay method is a Colorimetric, nonradioactive, fast and economical assay widely used to quantify cell viability and proliferation of mammalian cells. So, the cytotoxicity of the selected plant’s methanolic extracts was tested using MTT assay [9, 10]. The Thyellow tetrazolium MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) is reduced by metabolically active cells, in part by the action of dehydrogenase enzymes, to generate reducing equivalents such as NADH and NADPH. The resulting intracellular purple formazan can be solubilized and quantified by spectrophotometric means. Absorbance values that are lower than the control cells indicate a reduction in the rate of cell proliferation. Conversely, a higher absorbance rate indicates an increase in cell proliferation. Evidence of cell death may be inferred from morphological changes.

RESULTS AND DISCUSSION

Plants have been using in treatment for various diseases before the modern medicine [11]. The synthetic drugs using in modern medicine for treatment have the roots from naturally isolated compounds, especially medicinal plants [12]. But the long-term use of the synthetic drugs are causing unwanted side effects and decreases the immunity towards the normal diseases. Natural products, mainly medicinal plants are a significant source for the discovery of new bioactive molecules with high efficiency, fewer side effects [13]. In this point of view, the present study was done to identify the cytotoxicity (Anticancer) activity of Buchanania axillaris, Taminladia ulignosa, Phaseolus semierectus and Stylosanthes fruticosa on A549 cell line for lung cancer and A431 cell lines for skin cancer.

The selected plant extracts showed the dose-dependent cytotoxic activity on the tested cell lines. The cytotoxicity variations on different cell lines were observed for selected plants extracts. The IC50 values are shown in table 1. The cytotoxicity of the extracts was increased as the concentration of them was increased. The selected plants B. axillaris, T. ulignosa, P. semierectus and S. fruticosa have been using by people around the southern parts of the India for treating the diseases [7, 8].
T. ulignosa, methanolic extract showed more cytotoxic activity on A549 cell lines compared to other plants methanolic extracts. The
IC50 values of B. axillaris, P. semierectus and S. fruticosa on A549 cell lines were 98.40±0.61, 75.67±3.76, 133.04±8.37 on MCF-7, MDA-MB
and HT-29 cell lines respectively. The selected plants S. fruticosa and B. axillaris do not showed the cytotoxic effect on A431 cell lines, but
P. semierectus and T. ulignosa showed the cytotoxic activity with IC50 values 115.37±1.93 and 162.30±9.52. The variation of activity
on lung cancer and skin cancer cell lines was observed this variance may be because of chemical compounds response present in them.
Cancer is the unconditional growth of the cells in the affected, to decrease the effect of the cancers, the unconditional growth of the
number cell have to decrease. Till now, there is no accurate treatment for cancer, but the unconditionally increased cell number
due to cancer were decreasing by the affecting the cell metabolic pathways to kill them [14]. The cytotoxic effect of the selected plant
extracts may be due to the killing of abnormally growing cells due to cancer and the killing of those cell by apoptosis or necrosis process
[15, 16]. Apoptosis is activation of endonucleases causes double-strand breaks in DNA between nucleosomes leading to DNA is
fragmented into multiples pieces leads to cell death. Necrotic cell death is an unregulated process resulting from severe damage, such as
ATP depletion, hypoxia, various toxins and hyperthermia and characterized by cell swelling, lysis, and the release of intracellular
contents associated with pathological tissue injury [16, 17]. Plants have diverse chemical constituents in them for their metabolic
activities at the same time defense from their predators i.e. the compounds which protect the plants are may be responsible for
increasing the cancer cells mortality. The additional study is required to separate the pure compounds and their derivatives from
the chosen plants which are responsible cytotoxicity.

Table 1: IC50 values for test extracts (B. axillaris, T. ulignosa, P. semierectus and S. fruticosa) after performing cytotoxicity assay (MTT
assay) for 24h on A549 and A431 cell lines

<table>
<thead>
<tr>
<th></th>
<th>A549</th>
<th>A431</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAM</td>
<td>98.40±0.61</td>
<td>NA</td>
</tr>
<tr>
<td>TUM</td>
<td>32.74±3.20</td>
<td>162.30±9.52</td>
</tr>
<tr>
<td>PSM</td>
<td>75.67±3.76</td>
<td>115.37±1.93</td>
</tr>
<tr>
<td>SFM</td>
<td>133.04±8.37</td>
<td>NA</td>
</tr>
</tbody>
</table>

Values are mean ±SD, n= triplicate experiment

CONCLUSION
The present study showed that the selected traditional medicinal plants possess the cytotoxic activity on lung and skin cancer cell
lines.

ACKNOWLEDGEMENT
The authors would like to thank the TATA memorial center, Advanced Centre for Treatment, Research and Education in Cancer
(ACTREC), Kharghar, Mumbai, India for providing the cancer cell lines and their help in doing the anti-cancer activity successfully.

CONFLICT OF INTERESTS
Declared none

REFERENCES

How to cite this article