INTRODUCTION

Helminthic infections are among the commonest infections in man, affecting a large proportion of the world’s population. In developing countries they pose a major threat to public health and contribute to the prevalence of malnutrition, anaemia, eosinophilia, and pneumonia. Anthelmintics are drugs that either kill or expel infesting helminths and the gastrointestinal tract is the abode of many helminths, although some also live in tissues, or their larvae migrate into tissues. They harm the host by depriving him of food, causing blood loss, injury to organs, intestinal or lymphatic obstruction and by secreting toxins. Helminthiasis is rarely fatal but is a major cause of morbidity [1].

Helminthiasis is a macro parasitic disease observed in humans and animals in which a part of the body is infested with parasitic worms such as Roundworms (Nematodes), Tapeworms (Cestodes) or Flukes (Trematodes). Typically the worm’s reside in the GI Tract. Anthelmintics are drugs that destroy or expel parasitic intestinal worms from the body, by either vermifuges (stunning) or vermicides (killing). Most of the existing anthelmintics produce side effects such as abdominal pain, loss of appetite, nausea, vomiting, headache and diarrhoea. Since ancient times herbal drugs are used for the treatment of parasitic diseases in a human without any side effects. Hence there is an increasing demand and interest towards natural anthelmintics [3].

Ipomoea aquatica is a semi-aquatic, tropical plant grown as a vegetable for its tender shoots and leaves. It is found throughout the tropical and subtropical regions of the world, although it is not known where it originated. This plant is known in English as water spinach, river spinach, water morning glory, water convolvulus, or by the more ambiguous names Chinese spinach, Chinese Watercress, Chinese convolvulus, swamp cabbage or kangkong in Southeast Asia [4].

Ipomoea aquatica grows in water or on moist soil. Its stems are 2–3 metres (7–10 ft) or longer, rooting at the nodes, and they are hollow and can float. The leaves vary from typically sagittate (arrowhead-shaped) to lanceolate, 5–15 cm (2–6 in) long and 2–8 cm (0.8–3 in) broad. The flowers are trumpet-shaped, 3–5 cm (1–2 in) in diameter, and usually white in colour with a mauve centre. Propagation is either by planting cuttings of the stem shoots that will root along nodes or planting the seeds from flowers that produce seed pods [5, 6].

Water spinach, Ipomoea aquaticaForsk, (Convulvulaceae), is an aquatic or semi-aquatic Edible herb [7]. I. aquatica is used traditionally against various disorders like diabetes, liver malfunction, constipation and in the treatment of arsenic and heavy metal poisoning [7, 8]. Literature reviews revealed the occurrence of significant amounts of phenolic compounds, flavonoids, saponins, β-carotene and ascorbic acid in I. Aquatica [7]. Genus Ipomoea (Convulvulaceae) are used in traditional system of medicine all over the world and species Ipomoea aquaticaForsk widely used as an ingredient for the treatment of liver diseases [9] and constipation [10]. IAJ contains several phytoconstituents such as vitamins, including A, B, C, E, and “U” (S-methyl methionine) and is used to treat gastric and intestinal Disorders [11].

MATERIALS AND METHODS

Collection of plant material

Ipomea aquatica leaves were collected in the month of August 2017 from marvelly village, vatpally mandal, Sangareddy Dist of Telangana, India. The plant was authenticated by D. Venkateshwara Rao, Deputy Director, Telangana, Forest Academy, Dulpally, Hyderabad, Rangareddy District. The fresh leaves were collected, removed all earthy matter, washed, shade, dried and powdered by a pulverizer.

Collection of worms

Pheretimaposthuma (earthworms) were collected from the manure and identified and washed with water to remove all kinds of dirty water from them.

Chemicals and drugs used

Ethanol, Normal saline, Albendazole

Preparation of plant extract

The leaves of the plant were dried under shade and crushed in a pulverizer and powdered. The powdered plant extract with ethanol in Soxhlet apparatus for 72 h after completion of the

ABSTRACT

Objective: The present study was aimed at the evaluation of in vitro anthelmintic activity of ethanolic leaf extract of Ipomea aquatica against Indian earthworm Pheretimaposthuma.

Methods: Four concentrations (25 mg/mL, 50 mg/mL, 75 mg/mL, 100 mg/mL) were tested and results were expressed in terms of time for paralysis and time of the death of worms. In this study, Albendazole was used as a standard drug.

Results: Ethanolic leaf extract of ipomea aquatica showed significant activity at higher concentrations when compared to standard group (Albendazole).

Conclusion: It can be concluded that the ethanolic leaf extract of Ipomea aquatica has shown more significant anthelmintic activity when compared to Albendazole against Indian earthworm Pheretimaposthuma.

Keywords: Anthelmintic activity, Ipomea aquatica, Albendazole, Ethanolic extract, Pheretimaposthuma

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI: http://dx.doi.org/10.22159/ijcpr.2018v10i3.27338

ORIGINAL ARTICLE

IN VITRO ANTHELMINTIC ACTIVITY OF IpOMeA AQUATICA

SRiKaNTh I.*, KIRAN KUMAR V., KRISHNA SAI K, SUNIThA M., RAMANJANEYULu K., HIMABINdHu J.

Department of Pharmacognosy, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak

Email: srikanthinduri1313@gmail.com

Received: 22 Jan 2018, Revised and Accepted: 08 Apr 2018

International Journal of Current Pharmaceutical Research
ISSN- 0975-7066 Vol 10, Issue 3, 2018

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

DOI: http://dx.doi.org/10.22159/ijcpr.2018v10i3.27338
extraction, the extracts were cooled at room temperature and filtered and evaporated to dryness using rotary evaporator.

Phytochemical screening

The freshly prepared leaf extract of IAP was qualitatively tested for the presence of chemical constituents. Phytochemical screening of the extract was performed using the following reagents and chemicals: Alkaloids with Mayer's, Hager's and Dragendorff's reagent; Flavonoids with the use of sodium acetate, ferric chloride, amyl alcohol; Phenolic compounds and tannins with lead acetate and gelatin; carbohydrate with Molish's, Fehling's and Benedict's reagent; proteins and amino acids with Millon's, Biuret and xantho protein test; Saponins were tested using hemolysis method; Gum was tested using Molish's reagent and Ruthenium red; Coumarin by 10% sodium hydroxide and Quinones by Concentrated Sulphuric acid. These were identified by characteristic color changes using standard procedures [12].

The screening results were as follows: Alkaloids +ve; Carbohydrates +ve; Proteins and amino acids +ve; Steroids -ve; Sterols +ve; Phenols +ve; Flavonoids +ve; Gums and mucilage +ve; Glycosides +ve; Saponins –ve; Terpenes +ve and Tannins +ve. These were identified by characteristic color changes using standard procedures.

Preparation of concentrations

The ethanolic extract of Ipomea aquatica made into four different concentrations such as 25 mg/ml, 50 mg/ml, 75 mg/ml, 100 mg/ml by dissolving in normal saline. The standard control group Albendazole was prepared by using 0.5% w/v Carboxy Methyl Cellulose (CMC) as a suspending agent.

Evaluation of anthelmintic activity

The anthelmintic activity was carried according to the standard method [13-15]. Adult Indian earthworm Pheretima posthuma has an anatomical and physiological resemblance to the intestinal roundworm parasites of human beings. Indian earthworms were placed in a Petridish containing different concentrations (25 mg/ml, 50 mg/ml, 75 mg/ml, and 100 mg/ml) of ethanolic extract of Ipomea aquatica and standard drug Albendazole. Each Petri dish contains earthworms and observed for time of paralysis as well as time death. Time of paralysis recorded when no movement of any sort could be observed, except when the worm was shaken vigorously as well as the time of death was recorded after ascertaining that worms neither moved when shaken. Finally, the test results were compared with standard reference compound Albendazole.

RESULTS AND DISCUSSION

Preliminary phytochemical screening of Ipomea aquatica indicates presence of carbohydrate, alkaloid, flavonoids, proteins and amino acids. Ethanolic leaf extract of Ipomea aquatica shows significant effect on Pheretima posthuma. Higher concentrations of Ipomoea aquatic extracts produce a paralytic effect much earlier and time taken for death was shorter. It shows maximum efficacy at 50 mg/ml concentration than the standard drug (Albendazole) (Table 2).

Table 1: Phytochemical screening of leaves extract of Ipomea aquatica

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Aqueous extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>+</td>
</tr>
<tr>
<td>Amino acids</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+</td>
</tr>
<tr>
<td>Proteins</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 2: Anthelmintic activity of ethanolic leaf extract of Ipomea aquatica and standard Albendazole

<table>
<thead>
<tr>
<th>Extract</th>
<th>Concentrations (mg/ml)</th>
<th>Pheretima posthuma</th>
<th>Paralysis(min)</th>
<th>Death(min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanolic extract</td>
<td>25 mg/ml</td>
<td>21±1.34</td>
<td>26±0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 mg/ml</td>
<td>17±0.94</td>
<td>22±0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75 mg/ml</td>
<td>16±0.09</td>
<td>15±0.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 mg/ml</td>
<td>9±0.61</td>
<td>12±0.99</td>
<td></td>
</tr>
<tr>
<td>Albendazole</td>
<td>25 mg/ml</td>
<td>40±0.43</td>
<td>43±1.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 mg/ml</td>
<td>35±0.60</td>
<td>39±0.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75 mg/ml</td>
<td>31±0.81</td>
<td>35±1.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 mg/ml</td>
<td>22±1.4</td>
<td>25±0.92</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1: *In vitro* experimental model setup to evaluate the anthelmintic activity
CONCLUSION

It can be concluded that the ethanolic leaf extract of Ipomea aquaticahas shown more significant anthelmintic activity when compared to Albendazole against Indian earthworm Pheretimaposthuma.

ACKNOWLEDGEMENT

We sincerely thankful to our principal Dr. A. Ramesh and staff members, Director and chairman of our college Vishnu Institute of Pharmaceutical Education and Research (VIPER) for supporting us.

AUTHORS CONTRIBUTIONS

All the authors have contributed equally

CONFLICT OF INTERESTS

Declared none

REFERENCES

5. Growing kangkong in water. curiousgardener.com. [Last accessed on 10 Dec 2017]