ISSN- 0975-7066 Vol 15, Issue 1, 2023

Review Article

BIOLOGICAL ACTIVITY OF QUINAZOLINONE DERIVATIVES: A REVIEW

WAGHMARE SWEETI M., MANCHARE AKANKSHA M.*, SHAIKH AVESH Y.*, DIKSHA RAUT G.*

Department of Pharmaceutical Chemistry, Shantiniketan College of Pharmacy, Dhotre (BK), Ahmednagar 414304 Email: waghmaresweeti11@gmail.com

Received: 15 Oct 2022, Revised and Accepted: 22 Dec 2022

ABSTRACT

The heterocyclic compounds have a great importance in medicinal chemistry. Quinazolinone is a heterocyclic chemical compound. A quinazolinone with a carbonyl group in the C_4N_2 ring. The two isomers are possible: 2-Quinazolinone and 4-Quinazolinone, with the 4-isomer being the more common. These compounds are of interest in medicinal chemistry. Quinazolinone derivatives were reported to possess analgesic and anti-inflammatory activity, Antibacterial, Diuretic, Antihypertensive, Anti-diabetics, Anticancer, Antitumor, Anti-fungal, Anti-malarial, Anti-protozoal agent and many other biological Action. This skeleton is an important pharmacophore considered as a privileged structure.

Keywords: Quinazolinone, Antibacterial, Diuretic, Antifungal, Antitumor, Anticancer, Anti-diabetics, Antihypertensive, Anti-malarial

 $@\ 2023\ The\ Authors. Published\ by\ Innovare\ Academic\ Sciences\ Pvt\ Ltd.\ This\ is\ an\ open\ access\ article\ under\ the\ CC\ BY\ license\ (https://creativecommons.org/licenses/by/4.0/)\ DOI:\ https://dx.doi.org/10.22159/ijcpr.2023v15i1.2074\ Journal\ homepage:\ https://innovareacademics.in/journals/index.php/ijcpr$

INTRODUCTION

Quinazolinone are the class of heterocycles that are of considerable interest because of diverse range of their biological properties [1]. Quinazolinone will be classified into following five categoriers based on their substitution partition of the ring system.

There are 2 substituted-4(3H)-quinazolinone, 3substituted-4(3H)-quinazolinone, 4substituted quinazolinone,2,3-disubstituted-4-(3H)quinazolinone, 2,4-disubstituted-4-(3H) quinazolinone [2]. Quinazolinone derivative passes a wide range of bioavtivities, Antibacterial, Diuretic, Antihypertensive, Antidabetics, Anticancer, Antitumor, Anti fungal, Anti malerial, Anti protozamol agent and many other biological Action [3]. For medical preparation as, the natural and synthetic origins of quinazolinone 4 derivative Quinazolinone derivative are reported to be physiological and pharmaceutical Action [4].

Osol A. and J. E hoover studies on 2 substituted 7-chloro-2ethyl-4-oxo-1,2,3,4-tetrahydroquinazoline and check antihypertensive activity. This compound shows maximum activity used as reference drug [5].

HN H2N

Fig. 1: 7-chloro-2ethyl-4-oxo-1,2,3,4-tetrahydroquinazoline

Molecular formula: C₁₀H₁₂CIN₃NO₃S Molecular weight: 289.73 gm/mol Common name: Quinethazone. Melting point: 482–486 °F

Properties: It is oral drug administration. It is White to yellowish white crystalline powder [5]. It is odourless Bitter taste.

Solubility: Less than 1 mg/ml at 67.1 $^{\circ}$ F Soluble in acetone and Alcohol but slightly soluble in water [6].

Pharmacological action: Quinethazone solid under the brand name hydromox. It is a Thiazide like diuretic used to treat hypertension

[7]. Common side effect are Dizziness, Dry mouth, nausea, and low potassium level.

B. Vijayakumar, P. Prasanthi, K. M. Teja et al. studies on 3 substituted 7-chloro-4-oxo-2phenyl 2,3 dihydro 1*H* quinazoline-6-sulphonamide and checkthe antihypertensive and diuretic activity. This compound show maximum activity used as a reference [8].

Fig. 2: 7-chloro-4-oxo-2phenyl2,3dihydro1Hquinazoline-6 sulphonamide

Molecular formula: C₁₄H₁₂CLN₃O₃S

Molecular Weight: 337.8 gm **Common name:** Fenquizone. **Melting Point:** 72.96 °C

Properties: Fenquizone is member of quinazolinone entities of biologicalinterest.

Phaemacological action: It is diuretics part of the class of low celling sulphonamide. Diuretics [8]. Fenquizone is used primary in the treatment of hypertension [9].

B. Vijayakumar, P. Prasanthi, K. M. Teja et al. studied on 5 substituted 5-Fluro-3phenyl-2-[(1s)-1-(7H)-purin-6-ylaminol propyl]-4(3H)-quinazolinone and check the anti-cancer activity. This compound shows maximum activity and used as a referenc [12].

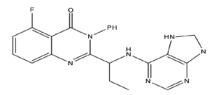


Fig. 3: 5-Fluro-3phenyl-2-[(1s)-1-(7H)-purin-6ylaminolpropyl]-4(3H) quinazolinone

 $\label{eq:molecular formula: C22} \begin{aligned} & \textbf{Molecular formula: } C_{22}H_{18}FN_7O \\ & \textbf{Molecular weight: } 415-432 \text{ gm/mol} \end{aligned}$

Common name: Idelalisib.

Melting Point: 250-252 °C

Properties: It is white to off-white powder, with pH-dependent

aqeous solubility ranging.

Solubility: Soluble in water [10] sparingly soluble in ethanol [11].

Pharmacological action: Idelalisib sold under the brand name zydelig is medication used the certain blood cancer [12]. It treat different type of leukemia [13].

V. K. Srivastava and A. Kumar, studies on 5 substituted-[(4-(3-methyl-4-oxoquinazolin-2-yl)methoxy)phenyl]-1,3 thiazolidine-2,4dioneand check the anti diabetic activity. This compound show maximum activity on used as a reference drug [14].

Fig. 4:5-[(4-(3-methyl-4-oxoquinazolin-2-yl)methoxy)phenyl]-1,3 thiazolidine-2,4dione

Molecular Formula: $C_{20}H_{17}N_3O_4S$ **Molecular weight:** 395.4 gm/mol. **Common name:** Balaglitazone.

Properties: It is second generation peroxisomes proliferates receptor gamma agonist with only partical agonistic properties.

Pharmacological action: It has been used in trails studing the treatment of diabetes mellitus. Type 2 blood glucose lowering agent.

W. L. Armarego studies on 2 methyl-3-otolyl-4(3H)-quinazolinone and check the activity of sedative and hypnotic. This compound show maximum activity and used as a reference drug [16].

Fig. 5:2 methyl-3-otolyl-4(3H)-quinazolinone

Molecular Formula: $C_{16}H_{14}N_2O$ Molecular weight: 250.30~gm/mol. Common name: Methaqualone

Melting Point: 113 °C

Properties: Crystals white or almost white crystalline powder, no odour.bitter taste [14].

Solubility: Soluble in alcohol, chloroform and ether but insoluble in water [15].

Pharmacological action: It is used in the treatment of insomnia and as sedative and hypnotics it increases GABA Action.

K. C. Agarwal, V. Sharma, N. Shakya, and S. Guptastudied on 3 substituted (2,3-dihydroxypropyl)-2-methyl-quinazolin-4-one and

check the anti-inflammatory activity. This compound shows maximum activity and used as reference drug [17].

Fig. 6: 3-(2,3-dihydroxypropyl)-2-methyl-quinazolin-4-one

Molecular Formula: $C_{12}H_{14}N_2O_3$ Molecular weight: 234-251 gm/mol Common name: Diproqualone.

Properties: It is quinazolinone class and analogue of methaqualone developed in late 1950's by a team at nogenataise de product chimique

Pharmacological action: It has sedative, anxiolytic, antihistamine and analgesic properties It is used primarily for the treatment of inflammation [16].

D. Kohli, S. R. Hashim, S. Vishal, M. Sharma, and A. K. Singhstudied on 3 substituted (2,6-diclorophenyl)-2-ethyl-4-quinazolinone and check anti-tissue activity. This compound shows maximum activity [18].

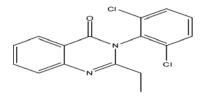


Fig. 7: 3-(2,6-diclorophenyl)-2-ethyl-4-quinazolinone

Molecular formula: C₁₆H₁₂CL₂N₂O Molecular weight: 319.185 gm/mol Common name: choloroqualone

Properties: choloroqualone has weaker sedative properties than methaqualone it has sold either alone or in combination with other ingredients as cough medicine.

Pharmacological action: It shows sedative and Antitissue properties resulting from agonist Action. It useful in the cough-suppressing effect [17].

A. Omar, M. F. Fattah, M. M. Emad, M. I. Neama, and M. K. Mohsen, studied 3 substituted 7-Bromo-6choro-3-[3-[(2S,3R)-3-hydroxy-2piperadinyl]-2oxopropyl]4-quinaxoline and check anti-inflammatory activity [19].

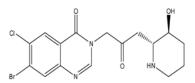


Fig. 8: 7-Bromo-6-chloro-3-[3-[(2S,3R)-3-hydroxy-2-piperadinyl]2oxopropyl]4-quinaxoline

Molecular formula: C₁₆H₁₇BrCLN₃O₃ **Molecular weight:** 414.68 gm/mol Common name: Halofuginane

Melting point: 105 °C

Properties: A potent inhibiter of collagen alpha 1 and matrix

metalloproteinase 2 gene expression

Solubility: soluble in water

Pharmacological action: It is used in veterinary medicine Halofuginone, therefore, has the potential for the treatment of an autoimmune disorder. It is also used for anti-inflammatory and anti fibrotic effect.

*A. Gürsoy and N. Terzioğlu*studied on 3 substituted {3-[(2R,3S)-3-hydroxypiperidin-2yl]-2-oxopropyl}quinazaline-4(3*H*)-one and check the anti-material, anticancer and anti-inflammatory activity. This compound shows maximum activity and used as a reference drug [20].

Fig. 9: 3-{3-[(2R,3S)-3hydroxypiperidin-2yl]-2-oxopropyl}quinazaline-4(3H)-one

Molecular formula: C₁₆H₁₉N₃O₃

Molecular weight: 301.346 gm/mol

Common name: febrifugine **Melting point:** 139–140 °C **Solubility:** Soluble in ethanol

Properties: Potent antimalarial Action; febrifugine is a natural

product found in Hydrangedfebrifuga.

Pharmacological action: It is used as veterinary medicine and also used against malaria, cancer and inflammatory disease [18].

C. Balakumar, P. Lamba, D. Pran Kishore, studied on 3 substituted [(E)2-phenylethenyl]quinazolin-4-oneand check antiseptic activity. This compound shows maximum activity and used as a reference drug [21].

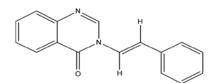


Fig. 10: 3-[(E)2-phenylethenyl]quinazolin-4-one

Molecular Formula: C₁₆H₁₂N₂O

Molecular weight: 248.28 gm/mol

Common name: Bogorine **Melting point:** 2076 °C

Solubility: slightly soluble in water

Properties: Amorphous dark brown to black powder brittle crystalline metal occur as a high-purity bogorine [19].

Pharmacological action: It is used in eye drops, mild anti-septic and also used in food preservative.

CONCLUSION

On the basis of various literature survey, Quinazolinone Derivatives shows various Pharmacological Action against Antibacterial, Anti

septic, Anti-fungal, Anti-cancer, Anti-hypertensive and Anti-inflammatory agent. Various recent new drug developments in quinazolinone derivatives shows greater effect and less toxicity.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

CONFLICT OF INTERESTS

Declared none

REFERENCES

- Connolly DJ, D Causack, T PO'sullivan, PJ Guiry. Synthesis of quinazolineandquinazolinone. Tetrahedron. 2005;61(43):10153-202.
- Mhaske SB, Argade NP. The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron. 2006;62(42):9787-826. doi: 10.1016/j.tet.2006.07.098.
- Abida P Nayyar, M Arpanarana. An updated review: newer quinazoline derivatives under clinical trial. International Journal of Pharmaceutical and Biological Archive. 2011;2(6):1651-7.
- 4. Rajput R, Mishra AP. A review on the biological activity of quinazolinones. Int J Pharm Pharm Sci. 2012;4(2):66-70.
- Osol A, JE Hoover. Remington's pharmaceutical science. 15th ed. Easton Pennsylvania: Mack publishing Co; 1975. p. 870.
- 6. Armarego WLF. A text book of Quinazolines; 1963.
- Budaviri S. editor. The merckIndex. An Encyclopedia of chemical drug, and Biologycal. White house Station, NJ. Merck and CO, Inc; 1996. p. 1385.
- 8. Vijayakumar B, Prasanthi P, Teja KM. Quinazoline derivatives and pharmacological activities: a review. Int J Med Chem Anal. 2013;3(1):10-21.
- 9. Pati B, Banerjee S. Quinazolines: an illustrated review journal of advanced pharmacy. Educ Res. 2013;3(3):136-51.
- Patel NB, Patel JC. Synthesis and antimicrobial activity of schiff bases and 2-azetidinones derived from quinazolin-4(3H)-one. Arab J Chem. 2011;4(4):403-11. doi: 10.1016/j.arabjc.2010.07.005.
- 11. Alafeefy AM, El-Azab AS, Mohamed MA, Bakhat MA, Abdel Hamid SG. Synthesis of some new substituted iodoquinazoline derivatives and their antimicrobial screening. J Saudi Chem Soc. 2011;15(4):319-25. doi: 10.1016/j.jscs.2011.07.005.
- Kunes J, Bazant J, Pour M, Waisser K, Slosarek M, Janota J. Quinazoline derivatives with antitubercular activity. Farmaco. 2000;55(11-12):725-9. doi: 10.1016/s0014-827x(00)00100-2, PMID 11204949.
- 13. MSM, MKI, AMA, SGA, AMM. Synthesis and antiinflammatory evaluation of some new quinazoline derivatives. Int J Pharmacol. 2005;1(3):261-6. doi: 10.3923/ijp.2005.261.266.
- Archana, Srivastava VK, Kumar A. Synthesis of some newer derivatives of substituted quinazolinonyl-2-oxo/thiobarbituric acid as potent anticonvulsant agents. Bioorg Med Chem. 2004;12(5):1257-64. doi: 10.1016/j.bmc.2003.08.035, PMID 14980637.
- Kabri Y, Azas N, Dumètre A, Hutter S, Laget M, Verhaeghe P. Original quinazoline derivatives displaying antiplasmodial properties. Eur J Med Chem. 2010;45(2):616-22. doi: 10.1016/j.ejmech.2009.11.005, PMID 19926173.
- Armarego WL. The chemistry of heterocyclic compound fused pyrimidines: 1967.
- 17. Agarwal KC, Sharma V, Shakya N, Gupta S. Design and synthesis of novel substituted quinazoline derivatives as antileishmanial agents. Bioorg Med Chem Lett. 2009;19(18):5474-7. doi: 10.1016/j.bmcl.2009.07.081, PMID 19692240.
- Kohli D, Hashim SR, Vishal S, Sharma M, Singh AK. Synthesis and antibacterial activity of quinazolinone derivatives. Int J Pharm Pharm Sci. 2009;1:163-9.
- Omar A, Fattah MF, Emad MM, Neama MI, Mohsen MK. Synthesis of some new quinazolin-4-one derivatives and

- evaluation of their antimicrobial and antiinflammatory
- effects. Acta Pol Pharm Drug Res. 2008;65(1):11-20.

 20. Gursoy A, Terzioglu N. Synthesis and isolation of new regioisomeric 4-thiazolidinones and their anticonvulsant activity. Turk J Chem. 2005;29(3):247-54.
- 21. Balakumar C, Lamba P, Kishore DP, Narayana BL, Rao KV, Rajwinder K. Synthesis, anti-inflammatory evaluation and docking studies of some new fluorinated fused quinazolines. Eur J Med Chem. 2010;45(11):4904-13. doi: 10.1016/j.ejmech.2010.07.063, PMID 20800934.