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ABSTRACT 

Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder primarily affecting individuals over 60. It is a multifactorial disease driven by 
both modifiable factors, such as lifestyle, diet, and prior health conditions, as well as non-modifiable factors, like age, genetics, and family history. 
The key pathological features of AD include the buildup of amyloid β plaques and neurofibrillary tangles resulting from hyperphosphorylated tau 
proteins in the brain. Biomarkers like amyloid β and tau protein levels in cerebrospinal fluid (CSF) and blood are essential for diagnosing and 
tracking AD progression. Current research focuses on developing drugs targeting multiple aspects of AD pathology, including inflammation, 
oxidative stress, synaptic dysfunction, and protein accumulation. These treatments aim to slow cognitive decline and neuronal damage. Given the 
complexity of AD, multi-targeted therapeutic approaches are being explored to enhance treatment efficacy. This review provides an overview of AD 
risk factors, key biomarkers used for diagnosis, and the latest advances in clinical drug development. 
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INTRODUCTION 

Neurodegenerative disorders such as Alzheimer's disease (AD) an 
irreversible conditions and cause atrophies in the cerebral cortex of 
the brain [1]. Alzheimer's disease is a complex disorder characterized 
by central nervous system neurodegeneration with significant 
involvement of the cholinergic system, resulting in gradual cognitive 
decline and dementia [2]. Recent discoveries, such as the detection of 
amyloid-beta (Aβ), tumor necrosis factors (TNFs), and neurofibrillary 
tangles (NFTs) consisting of hyperphosphorylated tau protein are 
potential causes of Alzheimer's disease development. Multi-targeted 
compounds that inhibit cholinesterases while also interfering with Aβ-
aggregation and/or tau protein neuroinflammation may be useful in 
the treatment of Alzheimer's disease [3, 4]. Alzheimer's disease (AD) is 
marked by intracellular neurofibrillary tangles containing tau and 
extracellular plaques containing amyloid β (Aβ) [5], which results in a 
gradual decline in mental behavioral, functional, as well as cognitive 
capabilities [6, 7]. 

According to the World Alzheimer Report 2022, more than 55 
million people worldwide have AD or associated disorders, with that 
fig. expected to rise to 82 million by 2030 and 138 million by 2050 
[8]. AD ranks as the fourth most common cause of death for older 
adults [9]. The number of Alzheimer's deaths in the US increased by 
54.5% in 2014 to 25.4 deaths per 100,000 people, up from 16.5 in 
1999. The percentage of Alzheimer's victims who passed away in 
hospitals dropped from 14.7% to 6.6%, whereas the percentage of 
victims who passed away at home rose from 13.9% to 24.9% [10]. 
According to recent studies conducted in 2022, the incidence cases 
of AD has increased to 7.24 million globally [11]. 

Various modifiable and non-modifiable factors are responsible for 
causing sporadic forms of AD [12]. Modifiable factors like 
Environmental influences, which can include lifestyle, diet, 
education, and exposure to various health factors, are also thought 
to play a role in the development of Alzheimer's disease. Non-
modifiable factors like genetic influences i. e., mutations in specific 
genes (e. g., APP, PSEN1, PSEN2), gender, entity, and family histories 
may impact the risk of developing AD [13].  

Biomarkers are measurable indicators of a biological state or 
condition. They can be molecules, genes, proteins, or other 

substances that are present in the body and can be detected and 
measured. Since there are no distinct symptoms or indicators for AD, 
biomarkers may help with early diagnosis, which is especially 
challenging. More importantly, they may help to identify people with 
preclinical Alzheimer's disease (those with AD neuropathology but 
no clinical symptoms) [14]. In addition to helping with disease 
diagnosis, biomarkers may also be useful for tracking the course of a 
disease and its reaction to therapy. Biomarkers for Alzheimer’s 
disease also can be evaluated from cerebrospinal fluid and blood 
serum [15]. 

The increasing prevalence of these diseases suggests that current 
treatment strategies are insufficient to effectively manage and 
prevent them [16]. As a result, novel treatment strategies are being 
investigated to cure these diseases by targeting the underlying 
mechanisms at the molecular level [17]. Novel therapies like gene 
therapy, stem cell therapy and targeting various mechanisms like 
inflammation, cell death, oxidative stress, amyloid beta (Aβ) peptide, 
tau protein, apolipoprotein E 4 (APOE4) effects, lipids and 
lipoprotein receptors, neurotransmitter receptors, neurogenesis, 
proteostasis, bioenergetics and metabolism, vascular factors and/or 
treating the diseases induce the Alzheimer’s disease [18]. 

Causative factors 

Age 

Alzheimer’s disease (AD) is the most common cause of dementia, 
affecting up to 20% of individuals>80 years of age [19]. A major 
meta-analysis discovered that brain amyloidosis is substantially 
linked with age; aging causes alterations in the transcriptome, 
resulting in two kinds of activated microglia (ARMs and IRMs) as 
well as AB deposition and that the curve showing the increase in 
amyloid with age corresponds to the increase in dementia 
prevalence with age [20, 21]. Both the entorhinal cortex (EC) and the 
hippocampus are sensitive to both normal aging and early 
Alzheimer's disease pathology. There is evidence that the 
anterolateral entorhinal cortex (AlEC) malfunctions in both healthy 
aging and preclinical Alzheimer's disease Tauopathy is associated 
with cognitive impairment in AD [22]. As a result, tauopathy affects 
the entire EC and spreads to the medial temporal lobe, including the 
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hippocampus. The development of tauopathy across the EC, 
including the pmEC, could compromise grid-cell activity and 

contribute to pure path integration (PPI) impairments in the early 
stages of Alzheimer's disease [23]. 

 

 

Fig. 1: Classification of risk factors related to alzheimer’s diseases 

 

Alzheimer's disease risk is influenced by both non-modifiable and 
modifiable factors. Non-modifiable factors include age, family 
history, specific genetic variations such as those in the APOE gene, 
and gender, with women being more susceptible. Modifiable factors 
that can be managed to reduce the risk include hypertension, 
obesity, poor dietary habits, and diabetes mellitus. Lifestyle choices, 
such as physical inactivity, smoking, and excessive alcohol 
consumption, also play a significant role. Additionally, exposure to 
heavy metals like lead and mercury has been linked to an increased 
risk of Alzheimer's disease. 

Social isolation 

Loneliness affects 12% to 40% of persons with age 65 and more, 
making them especially vulnerable to social isolation. Seniors who 
express feelings of loneliness are more likely to experience cognitive 
decline, memory impairment, and/or dementia [24]. Social Isolation 
and living alone may develop the possibility of getting Alzheimer's 
disease and dementia twice the risk [25]. Loneliness was one of the 
psychopathological aspects attributed to MCI [26]. Different 
cognitive domains are affected by social engagement at different 
times. Increased social interaction enhances speed, perceptual 
organization, and episodic memory but not working memory. While 
a larger social network may not always result in better mental 
efficiency, it may decrease specific cognitive domains, such as 
perceptual speed [27]. The categorization of risk factors associated 
with Alzheimer’s disease as depicted in fig. 1. 

Disease factors 

Diabetes  

According to a recent meta-analysis, the risk of developing AD is 
50% higher in T2D (Type 2 diabetes) patients over age-matched 
non-diabetic individuals [28]. T2D and Alzheimer's disease are 
metabolic diseases having similar characteristics in mitochondrial 
dysfunction and oxidative stress, impaired brain glucose 
metabolism, inflammation, insulin resistance (IR), advanced 
glycation end products formation, overproduction and aggregation 
of amyloid beta (Aβ), and tau protein hyper phosphorylation and 
deposition. This has led to the concept of "Type 3 diabetes" or 
"diabetes of the brain" [29, 30]. Glucose concentration will be higher 

in the brain tissue of Alzheimer’s patients in comparison to the age-
matched non-diabetic patients [31]. This complication can lead to 
the condition called Diabetic encephalopathy [32]. 

Hypertension  

A person who had hypertension in midlife had a higher risk of 
Alzheimer's disease than a person who was normotensive in midlife. 
Stroke is thought to act as a mediator in the relationship between high 
blood pressure (BP), cognitive decline and vascular dementia [33]. 
Angiotensin II directly causes brain oxidative stress and BBB disruption 
in hypertensive patient [34]. Hypertension is linked with Alzheimer's 
disease from mainly intracranial and extracranial mechanisms. 
Intracranial mechanisms-cerebral ischemia (41.3%), cerebral 
hemorrhage (19-63%), brain atrophy. Extracranial mechanisms-chronic 
kidney disease (40%), Extra-large vessels, cardiac disease (28%). 

A meta-analysis of population-based studies reported that 
prevalence of 41.3% (95%CI 29.6–53.1%) in hospital-based studies 
of stroke-induced dementia [35]. the higher blood pressure in the 
brain causes acute ischemic stroke and transient ischemic attack, 
which is characterized by the blockage of the blood vessels in the 
brain, thereby the insufficient blood supply to the brain cells that 
further leads to vascular dementia i. e. Post-stroke cognitive 
impairment (PSCI) [36]. Hypertension is a preventable risk factor for 
brain atrophy, which is one of the leading causes of 
neurodegenerative diseases. And elevated levels of neurofibrillary 
tangles and neuritic plaques in the hippocampus and neocortex [37, 
33]. Oxidative stress-induced inflammation leads to the damage of 
the blood-brain barrier along with the microglia activation. Thereby 
impairment of glymphatic clearance pathway for amyloid clearance 
[38]. There is a 19-63% risk of having cognitive impairment in 
patients with intracerebral hemorrhage [39]. Patients with chronic 
kidney disease (CKD) are more likely to develop neurological decline 
or dementia. The angiotensin AT1 receptor contributes to the higher 
exposure of AD mice to CKD-induced cognitive impairment by blood-
brain barrier (BBB) disruption or oxidative stress [40]. RAS-
activated M1 microglia release proinflammatory signals that 
exacerbate cognitive dysfunction in the cortex, hippocampus, basal 
ganglia, and neuronal death [41]. There is a correlation between 
large vessel atherosclerosis and a higher risk of both ischemic stroke 
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and Alzheimer's [42]. There is 28% relative odds increase in 
dementia risk in those with heart failure. Hypertension is a major 
risk factor for atrial fibrillation, which is linked to an increased risk 
of cognitive impairment. Atrial fibrillation was linked to a 50% 
increase in the relative odds of dementia or cognitive impairment in 
a meta-analysis of 43 cohort studies [43]. 

Obesity  

Numerous factors, including oxidative stress, inflammation, 
dyslipidemia, insulin resistance, and metabolic syndrome, have been 
linked between neurodegenerative diseases and obesity [44]. Having 
a high-fat diet AD [45], and disruption in the mitogen-activated 
protein (p38 MAPK) leads to Aβ aggregation and tau 
phosphorylation [46] Higher BMI at middle age and late ages 70, 75, 
and 79 years have a higher risk of occurrence of dementia [47]. 
Cognitive function impairment in obesity-induced AD rats was 

triggered by disruptions in the antioxidant defense system, 
specifically high malondialdehyde (MDA) and low total antioxidant 
capacity (TAC) levels in the brain [48]. Improper adipokine 
regulation and long-chain fatty acid (C16, C18) deposition in brain 
tissue alters the vascular functions in the brain, making insulin 
resistance and also triggering astrocyte pro-inflammatory cascade 
that makes Aβ accumulation and tau phosphorylation [49, 50]. 

AIDS  

The human immunodeficiency virus (HIV) can pass through the 
blood-brain barrier, causing neuronal dysfunction and cognitive 
decline. HIV patients may develop Aβ plaques or neurofibrillary 
tangles, suggesting a link between the two diseases. The virus may 
modulate Aβ and tau pathways, leading to neuroinflammation in 
both conditions [51]. The steps involved in causing Alzheimer’s 
disease by various disease conditions have been mentioned in fig. 2. 

 

 

Fig. 2: Steps involved in causing Alzheimer’s diseases by various disease conditions 

 

The fig. illustrates how various factors contribute to Alzheimer's 
disease. Cardiovascular disease and lead to hypoxia and 
neuroinflammation, increasing amyloid-beta (Aβ) levels and tau 
hyperphosphorylation, resulting in plaque formation and 
neurofibrillary tangles. Hypertension causes cerebrovascular 
damage and brain hypo perfusion, while obesity and type 2 diabetes 
impair brain metabolism, increasing Aβ and oxidative stress. Chronic 
kidney disease and atherosclerosis exacerbate hypoxia and vascular 
issues. These interconnected factors collectively contribute to the 
pathological features of Alzheimer's disease, including plaque 
formation, neuroinflammation, and neuronal damage. 

Heavy metals 

Aluminum exposure is believed to cause neurotoxicity in the central 
nervous system by damaging mitochondria, leading to excessive 
production of reactive oxygen species (ROS), DNA damage, and 
ultimately apoptotic cell death. This process is associated with a 
decrease in enzymatic activities, increased misfolded proteins, and 
oxidative stress [52]. Aluminum has been shown to bind negatively 
charged brain phospholipids with great affinity. These 

phospholipids contain polyunsaturated fatty acids that are readily 
attacked by reactive oxygen species (ROS) [53].  

Lead acts as a neurotoxicant, causing non-specific brain disruption 
through oxidative stress and subsequent mitochondrial damage. In 
addition, it interferes with the essential metals' homeostatic levels 
and the metal signaling pathways that lead to neuroinflammation. It 
has been demonstrated that lead treatment causes deficits in 
learning and memory in addition to increasing levels of tau protein, 
amyloid β protein precursor, and amyloid β in the brain [54]. 

Cadmium, a redox-inactive metal, causes oxidative stress, which 
triggers neurodegeneration signaling pathways like mitogen-
activated protein kinase (MAPK), protein kinase B (Akt), mammalian 
target of rapamycin (mTOR) and FasL-mediated mitochondrial 
apoptosis, ultimately leading to neuronal degeneration. Extracellular 
calcium influx increases due to disruptions in intracellular calcium 
homeostasis, and neuronal apoptosis is triggered by activating the 
MAPK and mTOR signaling pathways. Furthermore, affecting brain 
ion balance and nutrient uptake, cadmium damages the cerebral 
microvascular endothelium and raises BBB permeability [54].  
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Manganese is trace metal is essential for bone growth, blood clotting, 
immunity, carbohydrate metabolism, and brain function. High 
manganese exposure can accumulate in the brain and be neurotoxic. 
High manganese levels can impair cognitive function and contribute to 
Alzheimer's disease (AD). Oxidative stress, mitochondrial dysfunction, 
dysregulation of autophagy, build-up of intracellular toxic metabolites, 
and apoptosis are some of the underlying processes [54]. 

Elevated brain iron in AD has been linked to an accelerated clinical 
decline. High brain iron content produces ROS, which ultimately 
causes cell death. Iron chelation is thought to have neuroprotective 
effects by lowering brain iron levels, blocking the development of 
tau and Aβ pathology, and reducing harmful ROS [55]. 

Diet 

The Western diet (WD) consists of ultra-processed, refined foods high 
in simple carbohydrates, salt, saturated fat, and cholesterol, which will 
increase the amyloid β and tau protein levels in the brain. Inadequate 
intake of vegetables, fruits which makes low intake of nicotinic acid 
(B3), folic acid flavonoids, vitamin B9, and betulinic acid following 
brain atrophy, age-related cognition decline, affects BBB permeability 
and, thereby the risk of Alzheimer’s disease more [56, 57]. 

Genetic polymorphism 

TREM2, or trigger-expressing receptor expressed on myeloid cells 2, 
is a transmembrane receptor that is highly expressed in microglia 
cells and is involved in phagocytosis, inflammation, and glial cell 
activation. A genetic mutation in TREM2 enhances the risk of late-
onset al. zheimer's disease [58].  

β-site APP Cleaving Enzyme 1 (BACE1) is a β-secretase enzyme 
essential for the generation of Amyloid β monomeric forms like Aβ42. 
It is widely expressed in brain neurons. Mutations in the BACE1 gene 
can affect Beta-Secretase 1, resulting in increased production of 
amyloid-beta peptides, particularly longer, toxic forms. This leads to 
the build-up of amyloid plaques in the brain, which is a 
characteristic feature of Alzheimer's disease. These plaques disrupt 
neuronal communication, cause neuroinflammation, and eventually 
result in neuronal death and cognitive decline, exacerbating 
Alzheimer's disease progression [59].  

Alzheimer's disease is associated with the gamma-secretase complex 
gene Presenilin 1 (PS1). The dysregulation of gamma-secretase 
activity resulting from mutations in the PS1 gene can lead to an 
increase in the production of amyloid-beta peptides, especially the 
plaque-forming amyloid-beta 42 peptides. These plaques cause 
inflammation, impair neuronal function and ultimately result in 
neuronal death, all of which contribute to the neurodegenerative 
process. These mutations are associated with early-onset familial 
Alzheimer's disease, which makes up a tiny portion of cases and 
usually appears before the age of 65. The precise processes by which 
PS1 mutations contribute to the pathology of Alzheimer's disease, 
however, are still being studied [60]. 

Biomarkers 

Oxidative biomarkers 

Anti-Oxidants like Superoxide Dismutase (SOD), Catalase (CAT), And 
Glutathione Peroxidase antioxidants will neutralize the reactive 
oxygen species (ROS) produced excessively in the body due to 
various causes. Antioxidant enzymes like superoxide dismutase 
(SOD), Catalase (CAT), and glutathione peroxidase activity towards 
breaking down of superoxide and hydrogen peroxide will be 
compromised in the Alzheimer's CSF and Plasma [61]. Oxidative 
Stress Markers like F2-Isops are prostaglandin-like compounds. The 
esterified F2-Isops increases the free F2-Isops in the tissue 
undergone oxidative stress, 3-Nitrotyrosine, Nitric Oxide, and 
Malondialdehyde are the compounds synthesized by lipid 
peroxidation in the brain upon accumulation of the Aβ [62, 63]. 

CSF biomarkers 

APoD (Apolipoprotein D) is highly expressed in the brain, 
particularly in areas affected by AD, and its levels are often elevated 
in response to oxidative stress and inflammation, both of which are 
central to Alzheimer's pathology. APoD is thought to have 

neuroprotective functions by mitigating oxidative damage and 
promoting the clearance of harmful lipids. In AD, increased APoD 
expression has been observed in regions with amyloid-beta plaques 
and tau tangles, suggesting it may be part of the brain's response to 
ongoing neurodegeneration [64]. 

Aβ42 is considered to be at a higher level in the plasma in patients 
with AD. Usually, the Aβ42 binds with low-density lipoprotein 
receptor-related protein-1 (LRP1) in the brain but in the AD patient, 
the binding of Aβ42 with low-density lipoprotein receptor-related 
protein-1 (LRP1) is compromised, the biomarker efflux from the 
brain through the blood-brain barrier (BBB) and reaches plasma. A 
deposition can activate astrocytes and microglia through ROS 
generation, resulting in activation of the brain inflammatory 
pathway [64]. 

Tau proteins in neuronal axons help stabilize microtubules in the 
central nervous system (CNS). They consist of six soluble isoforms 
and numerous phosphorylation sites [65]. In neurons, 
hyperphosphorylated tau proteins detach from microtubules and 
form insoluble aggregates known as neurofibrillary tangles. There 
are two tau markers namely, total tau (t-tau) and phosphorylated 
tau (p-tau). The t-tau level in CSF represents the neuronal injury and 
p-tau represents the hyperphosphorylation of tau and formed 
neurofibrillary tangles [66, 67]. 

GFAP (Glial fibrillary acidic protein) is an astrocytic marker that 
mainly measures astrocytosis. CSF GFAP and plasma GFAP both are 
positively related to both age and gender. Plasma GFAP is associated 
with the accumulation of amyloid-β-PET in the neocortical regions 
and also its higher concentration is associated with Tau-PET. The 
accurate status of Amyloid – β deposition can be measured through 
the plasma GFAP marker [68]. 

YKL-40 is a secreted glycoprotein and it has a part in the activation 
of the innate immune system. Its elevated level in reactive astrocytes 
and microglial cells are directly associated with the 
neuroinflammatory processes. Dementia patients will have higher 
levels of YKL-40 in the CSF [69]. YKL-40 levels are elevated in 
autosomal dominant Alzheimer's disease mutation carriers 15 to 19 
years before symptom onset, shortly after the start of brain amyloid 
accumulation. So, this biomarker can be used for the early detection 
of Alzheimer’s disease [70]. 

Aquaporin 4 (AQP4) is the primary water channel found in the 
central nervous system (CNS), specifically in astrocytes. AQP4 plays 
a role in neurological diseases by regulating brain fluid and ion 
homeostasis, potassium uptake and release by astrocytes, migration 
and glial scarring, neural signal transduction, proinflammatory 
factor secretion, astrocyte-to-astrocyte cell communication, and 
synaptic plasticity. Reducing AQP4 will impair learning and memory, 
it also affects synaptic plasticity. Maintaining the level of AQP4 in 
astrocytes is one of the molecular-level therapies for AD [71, 72]. 

α-Synuclein is the precursor protein of a non-amyloid β component 
of senile plaques (NACP) and positive aggregates are found in limbic 
regions in Alzheimer's disease. It plays a part in synaptic 
adaptations, such as synaptic plasticity during development, 
learning, and the regulation of synaptic vesicle mobilization at nerve 
terminals. Polymorphism of the α-syn gene and higher levels in CFS 
will be diagnosed as Alzheimer’s Disease [73]. 

Apolipoprotein E (APOE) is a protein involved in lipid metabolism 
and transporting lipids, in the central nervous system. It plays a 
crucial role in the clearance of the Aβ and is associated with the Tau 
protein aggregation. It also maintains the BBB integrity and the 
synaptic plasticity. Damage in the BBB integrity leads to 
neuroinflammation [74]. 

Elevated levels of YWHAG in cerebrospinal fluid (CSF) may indicate 
ongoing neurodegenerative processes. This protein is released into 
the CSF when neurons are stressed or damaged, making its 
concentration a reflection of the extent of neurodegeneration. 
Increased YWHAG levels have been observed in AD patients and 
correlate with the severity of cognitive impairment and brain 
damage. Consequently, measuring YWHAG in CSF can help monitor 
disease progression and evaluate the effectiveness of therapeutic 
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interventions, providing valuable insights into the state of 
neurodegeneration in Alzheimer's disease [75]. 

The degradation of MBP (Myelin Basic Protein) contributes to 
demyelination, leading to impaired neuronal communication and 
cognitive decline. Elevated levels of MBP in cerebrospinal fluid (CSF) are 
often observed in AD, indicating ongoing neurodegeneration and white 
matter damage. MBP also interacts with amyloid-beta (Aβ) peptides, 
promoting plaque formation, a key feature of AD pathology [76]. 

Clusterin involves the clearance of amyloid-beta (Aβ) plaques. 
Clusterin binds to Aβ peptides, facilitating their transport and 
clearance from the brain, which may help mitigate plaque formation. 
However, elevated levels of clusterin have also been associated with 
increased amyloid burden and cognitive decline, suggesting a 
complex role in AD [77]. 

MMPs (Matrix Metalloproteinases) are enzymes that degrade 
extracellular matrix components and are involved in Alzheimer's 
disease (AD) through their effects on amyloid-beta (Aβ) plaques. While 
MMPs can aid in clearing Aβ, excessive activity may disrupt the blood-
brain barrier and exacerbate neuroinflammation. Elevated levels of 
certain MMPs, like MMP-9, are linked to AD progression, highlighting 
their potential as both therapeutic targets and biomarkers [78]. 

SNAP-25 (Synaptosomal-Associated Protein 25) is a critical protein 
involved in the regulation of neurotransmitter release by facilitating 
the fusion of synaptic vesicles with the presynaptic membrane. In 
Alzheimer's disease (AD), SNAP-25 levels and function are often 
disrupted, leading to impaired synaptic transmission and 
communication between neurons. This disruption is particularly 
significant as synaptic dysfunction is one of the earliest pathological 
features of AD and closely correlates with cognitive decline [79]. 

Plasma metabolites 

Leptin is a 16 kDa adipokine that is mainly secreted by adipocytes 
and plays a crucial role in controlling body weight and fat reserves. 
Leptin influences hippocampal neuron excitability through both 
synaptic and nonsynaptic pathways, mainly acting on arcuate nuclei 
in the hypothalamus. It also affects hippocampal-dependent learning 
and memory [79]. Leptin activates AMPK signaling pathways, which 
reduces Aβ deposition in neuronal cultures. A negative correlation 
was observed between plasma leptin and presenilin 1 protein 
expression, indicating that leptin controls γ-secretase activity in vivo. 
The Aβ-cleaving enzyme aspartyl protease β-site is decreased by 
leptin, reducing Aβ deposition [80-82]. 

BGLAP (Bone Gamma-Carboxyglutamate Protein), also known as 
osteocalcin, is a protein primarily involved in bone metabolism; 
osteocalcin can cross the blood-brain barrier and influence brain 
regions involved in memory and cognition. In the context of 
Alzheimer's disease (AD), lower levels of osteocalcin have been 

associated with an increased risk of cognitive decline. This protein is 
believed to enhance the production of neurotransmitters and 
support neurogenesis, potentially offering protective effects against 
neurodegenerative processes [83].  

Flotillin is connected to amyloid-beta plaques due to its role in 
organizing lipid rafts and processing amyloid precursor protein 
(APP). It may also affect tau protein pathology through its influence 
on cellular signaling and membrane dynamics. Variations in flotillin 
levels or function could, therefore impact both the formation of 
amyloid-beta plaques and tau protein abnormalities in Alzheimer's 
disease. Elevated or reduced flotillin in cerebrospinal fluid or blood 
could reflect disease presence or progression [84].  

Inflammatory biomarkers 

α1-anti-chymotrypsin (a1-ACT), which are produced by astrocytes. 
The compounds released from the astrocytes, microglia and neurons 
act as the inflammatory mediators; cytokines such as TNF-α, IL-1b 
and IL-6; and chemokines such as macrophage colony-stimulating 
factor and macrophage inflammatory proteins [85]. 

APoD (Apolipoprotein D): APoD is widely expressed in the brain, 
especially in AD-affected regions, and its levels are frequently raised 
in response to oxidative stress and inflammation, two factors that 
are essential to the pathophysiology of Alzheimer's disease. APoD is 
hypothesized to have neuroprotective properties via reducing 
oxidative damage and increasing the clearance of toxic lipids. 
Greater expression of APoD has been seen in areas of AD where tau 
tangles and amyloid-beta plaques are present, indicating that this 
may be the brain's response to the ongoing neurodegeneration [86]. 

Since neuroinflammation plays a major role in AD pathophysiology, 
CRISPLD2's (Cysteine-Rich Secretory Protein LCCL Domain 
Containing 2) involvement in controlling inflammation and its anti-
inflammatory capabilities are especially pertinent. Chronic 
inflammation contributes to the advancement of neurodegeneration 
in Alzheimer's disease, and proteins such as CRISPLD2 may assist to 
mitigate these effects. Recent research suggests that CRISPLD2 may 
be activated in the brain in response to inflammatory signals, 
possibly serving as a defence mechanism against the deleterious 
consequences of protracted inflammation [87]. 

Advancements in treatment 

Alzheimer’s is a multifactorial disease, though we need multi-
therapeutic approaches to cure the Alzheimer’s disease. Memory, 
thinking, behavioral, and learning impairments are the main 
characteristics of AD [88]. Reducing extracellular deposition of 
Amyloid β and intracellular deposition of tau proteins are the major 
objectives of the therapies for Alzheimer’s disease [89]. As AD is an 
irreversible chronic condition, we can control the disease but cannot 
cure it completely [90].  

 

Table 1: Ongoing therapeutic agents targeting tau pathology in alzheimer's disease 

Name Type Phase Site of action Mechanism of action Reference  

ABBV-181 Monoclonal 
Antibody 

Phase 
2/3 

Tau protein Targets specific epitopes of tau protein to inhibit aggregation and 
reduce neurofibrillary tangles. 

[91] 

TauVID 
(Flortaucipir) 

PET Imaging 
Agent 

Phase 2 Tau protein 
aggregates 

Binds to tau aggregates for imaging purposes to assess tau 
pathology and treatment efficacy. 

[92] 

LMTX 
(TRx0237) 

Tau Aggregation 
Inhibitor 

Phase 3 Tau protein Inhibits tau aggregation, preventing the formation of 
neurofibrillary tangles. 

[93] 

AADvac1 Vaccine Phase 2 Tau protein Stimulates an immune response against tau protein to reduce 
tangles and neurodegeneration. 

[95] 

PTI-125 Small Molecule Phase 2 Tau protein Binds to tau protein to inhibit its aggregation and mitigate tau-
related neurodegeneration. 

[91] 

TPI-287 Small Molecule Phase 2 Tau protein and 
microtubules 

Stabilizes microtubules and inhibits tau aggregation. [94] 

GV-971 
(Oligomannate) 

Marine-derived 
Polysaccharide 

Phase 3 Tau protein and 
amyloid-beta 

Modulates neuroinflammation and targets both tau and amyloid-
beta to reduce associated pathology. 

[96] 

 

Tau therapy 

Tau therapies for Alzheimer's disease mentioned in table 1 focus on 
targeting the tau protein, which forms harmful tangles in the brain. 
ABBV-181 is a monoclonal antibody that inhibits tau aggregation by 

targeting specific tau epitopes [91], while TauVID (Flortaucipir) is 
used as a PET imaging agent to visualize tau pathology [92]. LMTX 
(TRx0237) and PTI-125 are designed to prevent the formation of 
neurofibrillary tangles by inhibiting tau aggregation [93]. TPI-287 not 
only inhibits tau aggregation but also stabilizes microtubules [94]. 
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AADvac1 is a vaccine that stimulates an immune response against tau 
[95] and GV-971 (Oligomannate) targets both tau and amyloid-beta to 
reduce neuroinflammation and associated pathology [96]. 

Anti-amyloid therapy 

Anti-amyloid drugs for Alzheimer's target amyloid-beta plaques to 
reduce their buildup and associated damage mentioned in table 2. 

Lecanemab (Leqembi) [97], an approved drug, and other 
monoclonal antibodies like Donanemab and Gantenerumab promote 
plaque clearance. Crenezumab targets both plaques and soluble 
forms [98], while ALZ-801 prevents oligomer aggregation [99]. 
Vaccines like ACC-001 [100] and UB-311 stimulate the immune 
system to clear amyloid-beta, aiming to halt plaque formation and 
progression [101-103]. 

 

Table 2: Ongoing therapeutic agents targeting amyloid-beta in alzheimer's disease 

Name Type Phase Site of action Mechanism of action Reference  

Lecanemab 
(Leqembi) 

Monoclonal 
Antibody 

Approved Amyloid-beta plaques 
and soluble amyloid-beta 

Binds to amyloid-beta plaques and soluble forms, 
promoting clearance through microglial phagocytosis. 

97 

Donanemab Monoclonal 
Antibody 

Phase 3 N3pE-modified amyloid-
beta plaques 

Targets N3pE-modified amyloid-beta, promoting 
plaque removal by the immune system. 

98 

Gantenerumab Monoclonal 
Antibody 

Phase 3 Amyloid-beta plaques Binds to amyloid-beta plaques, inducing microglial 
activation to enhance plaque clearance. 

98 

Crenezumab Monoclonal 
Antibody 

Phase 3 Amyloid-beta plaques 
and soluble amyloid-beta 

Binds to amyloid-beta plaques and soluble forms, 
promoting removal and reducing plaque formation. 

98 

ALZ-801 Modified Drug Phase 3 Amyloid-beta oligomers 
and plaques 

Binds to amyloid-beta oligomers, preventing 
aggregation and promoting plaque clearance. 

99 

IV Immunoglobulin 
(IVIG) 

Immunotherapy Phase 3 Amyloid-beta plaques 
and neuroinflammation 

Contains diverse antibodies that modulate immune 
response, reduce inflammation, and aid in plaque 
clearance. 

102 

ACC-001 Vaccine Phase 1/2 Amyloid-beta peptides 
and plaques 

Induces immune response against amyloid-beta, 
promoting plaque removal via antibody binding. 

100 

Eli Lilly's Amyloid-
beta Vaccine 
(LY3303560) 

Vaccine Phase 1 Amyloid-beta plaques Stimulates immune system to produce antibodies 
against amyloid-beta plaques, facilitating their 
clearance. 

103 

Protofibril Vaccine Vaccine Phase 1/2 Protofibril forms of 
amyloid-beta 

Targets protofibrils to induce immune response and 
prevent their aggregation into plaques. 

103 

UB-311 Vaccine Phase 2 Amyloid-beta plaques 
and soluble amyloid-beta 

Stimulates immune response to produce antibodies 
against amyloid-beta, aiding in plaque removal. 

101 

 

Gene and cell therapies 

Gene and cell therapies are innovative approaches being explored for 
Alzheimer's disease, targeting the root causes of neurodegeneration. 
AAV2-CRISPR uses viral vectors to deliver gene-editing tools [104], while 
Cerebrolysin and NeuroStem-1 focus on neuroprotection and repair 

using peptides and stem cells, respectively [105, 106]. Stem Cell-Derived 
Neurons aim to replace damaged neurons [106], and GDNF Therapy 
delivers neurotrophic factors to support neuron survival [108]. In 
preclinical stages, Ad5-CMV-PSEN1 and AAV-GFAP are designed to 
modify gene expression and enhance astrocyte function, offering hope 
for slowing disease progression [109, 106, 110]. 

 

Table 3: Current and emerging gene and cell therapies for Alzheimer's disease 

Name Type Phase Site of action Mechanism of action Reference  
AAV2-CRISPR Gene 

therapy 
Early 
clinical 
trials 

Target genes 
associated with 
Alzheimer's 

Uses adeno-associated virus (AAV) vectors to deliver 
CRISPR/Cas9 gene-editing tools to modify genes 
related to Alzheimer's pathology. 

[104] 

Cerebrolysin Cell 
therapy 

Phase 3 Brain neuroprotection A peptide mixture derived from pig brain tissue that 
is believed to enhance neuroprotection and support 
neuronal survival. 

[105] 

NeuroStem-1 Stem cell 
therapy 

Phase 1 Brain regions affected 
by Alzheimer's 

Uses human neural stem cells to replace damaged 
neurons and promote repair in the brain. 

[106] 

Stem Cell-Derived 
Neurons 

Cell 
therapy 

Preclinical 
to phase 1 

Brain regions affected 
by Alzheimer's 

Transplants neurons derived from human stem cells 
into the brain to replace damaged neurons and 
restore function. 

[107] 

GDNF (Glial cell line-
derived neurotrophic 
factor) therapy 

Gene 
therapy 

Preclinical Neurons in the brain Delivers GDNF to support neuron survival and 
function, aiming to slow the progression of 
neurodegeneration. 

[108] 

Ad5-CMV-PSEN1 Gene 
therapy 

Preclinical Neurons in the brain Uses adenoviral vectors to deliver PSEN1 (Presenilin 
1) to modify gene expression and influence 
Alzheimer's disease progression. 

[109] 

AAV-GFAP Gene 
therapy 

Preclinical Astrocytes in the brain Delivers genes that encode for growth factors to 
support astrocyte function and protect against 
neurodegeneration 

[107] 

 

CONCLUSION 

Alzheimer's disease (AD) is a multifaceted neurodegenerative 
condition primarily affecting older individuals, characterized by the 
accumulation of amyloid-beta plaques and tau protein tangles in the 
brain. Age-related changes in the transcriptome, social isolation, and 

various health factors, including diabetes, hypertension, and obesity, 
contribute to its development. Genetic predispositions also play a 
significant role, with polymorphisms in genes like TREM2 and 
BACE1 influencing susceptibility. Biomarkers such as oxidative 
stress indicators, CNS metabolites, plasma metabolites, and 
inflammatory markers provide insights into AD pathology and serve 



S. Janadri et al. 
Int J Curr Pharm Res, Vol 17, Issue 1, 1-10 

7 

as potential targets for therapeutic interventions. Oxidative stress, 
reflected in compromised antioxidant enzymes and increased 
oxidative stress markers, contributes to neuronal damage and Aβ 
accumulation. CNS metabolites like APP, Aβ42, tau proteins, and 
inflammatory markers like α1-anti-chymotrypsin exacerbate 
neuroinflammation, furthering disease progression. In therapeutic 
endeavors, targeting amyloid β deposition and tau protein 
accumulation remains pivotal. Novel compounds like salicylic acid–
donepezil–rivastigmine hybrids offer multifunctional effects 
including inflammation inhibition and neuroprotection. Therapeutic 
strategies encompass diverse approaches such as anti-amyloid and 
tau therapies, inflammation modulation, neurogenesis promotion, 
and metabolic optimization. However, AD remains irreversible, 
necessitating a shift towards disease management rather than a 
complete cure. While there is ongoing research and innovation in 
therapeutic developments, the complexity of AD demands a 
comprehensive approach involving early detection, lifestyle 
interventions, and personalized treatment plans to improve the 
quality of life for affected individuals and their caregivers. 

In the future, Alzheimer's disease research and treatment will focus 
on early detection methods, personalized medicine, and disease-
modifying therapies. Non-pharmacological interventions, digital 
health technologies, and combination therapies will also play 
important roles. Immunotherapy and brain stimulation techniques 
show promise, while multidisciplinary care models will cater to the 
complex needs of patients and caregivers. Global collaboration and 
advocacy efforts will be crucial in advancing Alzheimer's care and 
reducing its impact worldwide. 
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