ISOLATION, CHARACTERIZATION AND VALIDATION OF HPLC METHOD FOR QUANTIFICATION OF BIS-[10-(2-METHYL-4H-3-THIA-4,9-DIAZABENZO[F]AZULENE)]-1,4-PIPERAZINE IN AN ANTI-PSYCHOTIC DRUG SUBSTANCE, OLANZAPINE

  • Suresh Babu Bodempudi GITAM University, Visakhapatnam, India, and Dr. Konda’s Life Sciences, Hyderabad
  • Ravi Chandra Babu Rupakula GITAM University, Visakhapatnam, India, and Dr. Konda’s Life Sciences, Hyderabad
  • Konda S. Reddy GITAM University, Visakhapatnam, India, and Dr. Konda’s Life Sciences, Hyderabad
  • Mahesh Reddy Ghanta GITAM University, Visakhapatnam, India, and Dr. Konda’s Life Sciences, Hyderabad

Abstract

Objective: The main objective of present study was to Isolate, characterize and validate a reverse phase high performance liquid chromatographic method was validated for quantification of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine in Olanzapine drug substance; it decreases the mental disorders in human body. The method is specific, rapid, precise and accurate for the separation and determination of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine in Olanzapine drug substance form.

Methods: The bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine of Olanzapine was resolved on a Zorbax RX-C 8, 250 mm X 4.6 mm, 5 micron column (L-1) using a mobile phase system containing 0.03 M sodium dodecyl sulphate in water pH 2.5 with 1 N sodium hydroxide solution and acetonitrile in the ratio of (Mobile phase A-52:48 v/v) and (Mobile phase B-buffer and Acetonitrile 30:70 v/v) by using the gradient program. The mobile phase was set at a flow rate of 1.5 ml/min and the volume injected was 20μl for every injection. The detection wavelength was set at 220 nm and the column temperature was set at 35 °C.

Results: The proposed method was productively applied for the quantitative determination of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo [f]azulene)]-1,4-piperazine in Olanzapine drug substance form. The linear regression analysis data for calibration plots showed a good linear relationship over a concentration range of 0.025to 0.903 µg/ml for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine, 0.081-0.608 µg/ml for Olanzapine. The mean values of the correlation coefficient were 0.999 and 0.999 for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine. The method was validated as per the ICH guidelines. The detection limit (LOD) was about 0.007 µg/ml, 0.024 µg/ml and quantitation limit (LOQ) was about 0.024 µg/ml, 0.081 µg/ml for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine. The relative standard deviation was found to be 1.64 % and 2.18 % for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine.

Conclusion: The validated HPLC method and the statistical analysis showed that the method is repeatable and selective for the estimation of the bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine of the Olanzapine drug substance.
Keywords: Bis-[10-(2-methyl-4H-3-thia-4, 9-diazabenzo[f]azulene)]-1, 4-piperazine, Olanzapine, Isolation, Characterization, HPLC, Quantification and Validation

References

1. Neil MJO. Ed. by the Merck Index-An Encyclopedia of Chemicals, Drugs and Biological; Merck and Co. Inc; 2006.
2. Sweetman SC. Ed. by Martindale, the Complete Drug Reference; Pharmaceutical Press; 2007.
3. Keamey BP, Flherty JF, Shah J. Olanzapine: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet 2004;43:595-612.
4. MA Raggi, G Casamenti, R Mandrioli, G Izzo, E Kenndler. Quantitation of olanzapine in tablets by HPLC, CZE, derivative spectrometry and linear voltammetry. J Pharm Biomed Anal 2000;23:973–81.
5. LJ Dusci, LP Hackett, LM Fellows, KF Ilett. Determination of olanzapine in plasma by high-performance liquid chromatography using ultraviolet absorbance detection. J Chromatogr B 2002;773:191–7.
6. DW Boulton, JS Markowitz, CL Vane. A high-performance liquid chromatography assay with ultraviolet detection for olanzapine in human plasma and urine. J Chromatogr B 2001;759:319–23.
7. JT Catlow, RD Barton, M Clemens, TA Gillespie, M Goodwin, SP Swanson. Analysis of olanzapine in human plasma utilizing reversed-phase high-performance liquid chromatography with electrochemical detection. J Chromatogr B 1995;668:85–90.
8. CS Torre, MA Martinez, E Almarza. Several psychiatric drugs in whole blood using capillary gas–liquid chromatography with nitrogen phosphorus detection: comparison of two solid phase extraction procedures. Forensic Sci Int 2005;155:193–204.
9. Geneva: IFPMA. International Conference on Harmonization. Guidance on validation of analytical procedure: Text and methodology. ICH–Q2(R1); 2005.
10. Stability ICH. “Testing of New Drug Substances and Products Q1A (R2),” International Conference on Har-monization, IFPMA, Geneva; 2003.
11. ICH Photo Stability, “Testing of New Drug Substances and Products Q1b,” International Conference on Harmo-nization, IFPMA, Geneva; 1996.
Statistics
167 Views | 306 Downloads
Citatons
How to Cite
Bodempudi, S. B., R. C. B. Rupakula, K. S. Reddy, and M. R. Ghanta. “ISOLATION, CHARACTERIZATION AND VALIDATION OF HPLC METHOD FOR QUANTIFICATION OF BIS-[10-(2-METHYL-4H-3-THIA-4,9-DIAZABENZO[F]AZULENE)]-1,4-PIPERAZINE IN AN ANTI-PSYCHOTIC DRUG SUBSTANCE, OLANZAPINE”. International Journal of Current Pharmaceutical Research, Vol. 10, no. 4, July 2018, pp. 22-28, doi:10.22159/ijcpr.2018v10i4.28454.
Section
Original Article(s)