CHEMICAL ANALYSIS, ANTIOXIDANT, ANTI-INFLAMMATORY AND ANTINOCICEPTIVE EFFECTS OF ACETONE EXTRACT OF ALGERIAN SOLENOSTEMMA ARGEL (DELILE) HAYNE LEAVES

  • DAOUIA KELTOUM BENMAAROUF Unit for Evaluating the Efficacy of Pharmacological Molecules and Developing Alternative Strategies, Sante and Productions Animales Research Laboratory, Ecole Nationale Superieure Veterinaire, Algiers, Algeria
  • DIANA C. G. A. PINTO Department of Chemistry and QOPNA, University of Aveiro, Campus de Santiago, 3810193 Aveiro, Portugal
  • BERNARD CHINA Sciensano, the Belgian Health Institute, Quality of Laboratories, 1050 Brussels, Belgium
  • SAFIA ZENIA Unit for Evaluating the Efficacy of Pharmacological Molecules and Developing Alternative Strategies, Sante and Productions Animales Research Laboratory, Ecole Nationale Superieure Veterinaire, Algiers, Algeria
  • KHEIRA BOUZID BENDESARI Department of Pathology, Beni Messous Hospital, Algiers, Algeria
  • MERIEM HIND BEN-MAHDI Unit for Evaluating the Efficacy of Pharmacological Molecules and Developing Alternative Strategies, Sante and Productions Animales Research Laboratory, Ecole Nationale Superieure Veterinaire, Algiers, Algeria

Abstract

Objective: To investigate the qualitative composition of the acetonic extract from leaves of S. argel (AESA) and their anti-inflammatory and analgesic properties in vivo.


Methods: AESA profile was established by UHPLC/DAD/ESI-MS2. AESA was subjected to the acute oral toxicity study according to the OECD-420 method. Antioxydant activity of AESA was performed by DPPH radical scavenging assay. Anti-inflammatory effects of AESA were determined in two animal models: carrageenan-induced paw edema in rats and cotton pellet-induced granuloma formation in rats. Further, anti-nociceptives activities of AESA were assessed by hot plate test, acetic acid-induced abdominal writhing test and formalin test.


Results: The in vivo AESA toxicity was low. AESA expresses a maximum radical scavenging activity with a IC50 value of 36,05 μg/ml. The AESA at 250 and 400 mg/kg significantly reduced carrageen an induced paw edema by 70.09% and 85.53% 6h after carrageenan injection, respectively. AESA produced significant dose-dependent anti-inflammatory effect against cotton pellets-induced granuloma formation in rats. In addition, AESA at 250 and 400 mg/kg significantly reduced acetic acid-induced writhing by 56.83 and 80.41%, respectively. Oral administration of 250 and 400 mg/kg of AESA caused a significant dose dependent anti-nociceptive effect in both neurogenic and inflammatory phases of formalin-induced licking. AESA also impacted the pain latency in the hot plat test.


Conclusion: These data suggest that AESA possesses antioxidant, anti-inflammatory and anti-nociceptive effects. These results support the traditional use of S. argel to cure pain and inflammatory diseases in the Algerian Sahara.

Keywords: Solenostemma argel, UHPLC/DAD/ESI-MS2, Antioxidant, Anti-inflammatory, Analgesic, Toxicity

References

1. Calixto JB, Campos MM, Otuki MF, Santos AR. Anti-inflammatory compounds of plant origin Part II. Modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 2004;70:93–103.
2. Benhouhou S. Solenostemma argel (Del.) Hayne. In: A guide to medicinal plants in North Africa. Centre for Mediterranean Cooperation, International IU CN; 2005.
3. Gurib Fakim A, Schmelzer GH. Ressources vegetales de l’Afrique tropicale: plantes medicinales 2. Fondation PROTA/CTA, Wageningen, The Netherlands; 2013.
4. Innocenti G, Dall’Acqua S, Sosa S, Altinier G, Della Loggia R. Topical anti-inflammatory activity of solenostemmaargel leaves. J Ethnopharmacol 2005;102:307–10.
5. Jabeen F, Tharib SM, Veitch GBA. An investigation of the anti-inflammatory activity of Solenostemma argel. Fitoter 1984; 55:186–9.
6. Ibrahim B, Sowemimo A, van Rooyen A, Van de Venter M. Antiinflammatory, analgesic and antioxidant activities of cyathulaprostrata (Linn.) blume (Amaranthaceae). J Ethnopharmacol 2012;141:282-9.
7. Wang QS, Yang L, Cui WY, Chen L, Jiang YH. Anti-inflammatory and anti-nociceptive activities of methanol extract from aerial part of Phlomisyounghusbandii Mukerjee. PLoS One 2014;9:E89149.
8. Fangkrathok N, Junlatat J, Sripanidkulchai B. In vivo and in vitro anti-inflammatory activity of lentinuspolychrous extract. J Ethnopharmacol 2013;14:631-7.
9. Ibrahim Abdelwahab S, Syaed Koko W, Mohamed Elhassan Taha, M Mohan S, Achoui M, Ameen Abdulla M, et al. In vitro and in vivo anti-inflammatory activities of columbin through the inhibition of cycloxygenase-2 and nitric oxide but not the suppression of NF-?B translocation. Eur J Pharmacol 2012;678:61-70.
10. Bhattacharya A, Naik MR, Divya A, Rath K, Kumar S, Mishra SS. Antipyretic, anti-inflammatory, and analgesic effects of leaf extract of drumstick tree. J Young Pharm 2014;6:20-4.
11. Eloff JN. Which extractant should be used for the screening and isolation of antimicrobial components from plants? J Ethnopharmacol 1998;60:1-8.
12. Waterhouse AL. Determination of total phenolics. In: Wrolstad RE. editor. Current protocols in food analytical chemistry Wiley; 2002. p. 461–70.
13. Quettier Deleu C. Phenolic compounds and antioxidant activities of buckweat hulls and flour. J Ethnopharmacol 2000;72:35–42.
14. Blois MS. Antioxydant determinations by the use of a stable free radical. Nature 1958;181:1199-200.
15. OCDE. Test No. 420: Acute oral toxicity-fixed dose procedure, OECD Guidelines for the Testing of Chemicals, Section 4, Éditions OCDE, Paris; 2002. https://doi.org/10.1787/ 9789264070943-en
16. Winter CA, Risley EA, Nuss GW. Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 1962;111:544–7.
17. Sengar N, Joshi A, Prasad SK, Hemalatha S. Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of jasminumsambac. J Ethnopharmacol 2015;160:140-8.
18. Koster R, Anderson M, De Beer EJ. Acetic acid for analgesic screening. Fed Proc 1959;18:412-7.
19. Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non inflammatory pain. Pain 1987;30:103–14.
20. Tasleem F, Azhar I, Ali SN, Perveen S, Mahmood ZA. Analgesic and anti-inflammatory activities of piper nigrum L. Asian Pac J Trop Med 2014;7S1:S461-S468.
21. Ibrahim RM, El-Halawany AM, Saleh DO, El Naggar EMB, El-Shabrawy A, El-Rahman O, et al. HPLC-DAD-MS/MS profiling of phenolics from securigerasecuridaca flowers and its anti-hyperglycemic and anti-hyperlipidemic activities. Rev Bra Farm 2015;25:134–41.
22. Kammerer B, Kahlich R, Biegert C, Gleiter C, Heide L. HPLC-MS/MS analysis of willow bark extracts contained in pharmaceutical preparations. Phytochem Anal 2005;16:470–8.
23. Chen Y, Yu H, Wu H, Pan Y, Wang K, Jin Y, et al. Characterization and Quantification by LC-MS/MS of the chemical components of the heating products of the flavonoids extract in pollen typhae for transformation rule exploration. Molecules 2015;20:18352-66.
24. Singh AP, Wang Y, Olson RM, Luthria D, Banuelos GS, Pasakdee S, et al. LC-MS-MS analysis and the antioxidant activity of flavonoids from eggplant skins grown in organic and conventional environments. Food Nut Sci 2017;8:873-88.
25. Monagas M, Garrido I, Lebron Aguilar R, Bartolome B, Gomez Cordoves C. Almond (Prunusdulcis (Mill.) D. A. Webb) skins as a potential source of bioactive polyphenols. J Agric Food Chem 2007;55:8498–507.
26. Llorach R, Gil-Izquierdo A, Ferreres F, Tomas Barberan FA. HPLC-DAD-MS/MS ESI characterization of unusual highly glycosylated acylated flavonoids fromcauliflower (Brassica oleracea L. var. botrytis) agroindustrial byproducts. J Agric Food Chem 2003;51:3895-9.
27. Harbaum B, Hubbermann EM, Wolff C, Herges R, Zhu Z, Chwarz K. Identification of flavonoids and hydroxycinnamic acids in pak choi varieties (brassica campestris l. ssp. chinensis var. communis) by HPLC–ESI-MSn and NMR and their quantification by HPLC–DAD. J Agric Food Chem 2007;55:8251-60.
28. Plaza A, Perrone A, Balestrieri ML, Felice F, Balestrieri C, Hamed Arafa I, et al. New unusual pregnane glycosides with antiproliferative activity from Solenostemmaargel. Steroids 2005;70:594-603.
29. Kamel MS, Ohtani K, Hasanain HA, Mohamed MH, Kasai R, Yamasaki K. Monoterpene and pregnane glucosides from solenostemmaargel. Phytochem 2000;53:937-40.
30. El-Fishawy A. A pharmacognostical study of solenostemmaargel hayne growing in Egypt. A Master Thesis, Faculty of Pharmacy, Cairo University, Egypt; 1976.
31. Michael HN. Chemical investigations on the leaves of solenostemmaargel [Del.] hayne. Asian J Chem 1998;10:1038.
32. Hassan HA, Hame AI, El-Emary NA, Springue IV, Mitome H, Miyaoka H. Pregnene derivatives from solenostemmaargel leaves. Phytochemistry 2001;5:507-11.
33. Koleva II TA, van Beek TA, Linssen JP, de Groot A, Evstatieva LN. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal 2002;13:8–17.
34. Ghasemzadeh A, Ghasemzadeh N. Flavonoids and phenolic acids: role and biochemical activity in plants and human. J Med Plants Res 2011;5:6697-703.
35. Sikder K, Kesh SB, Das N, Manna K, Dey S. The high antioxidative power of quercetin (aglycone flavonoid) and its glycone (rutin) avert high cholesterol diet induced hepatotoxicity and inflammation in swiss albino mice. Food Funct 2014;5:1294.
36. Chua LS. A review on plant-based rutin extraction methods and its pharmacological activities. J Ethnopharmacol 2013; 150:805-17.
37. Tsai MS, Wang YH, Lai YY, Tsou HK, Liou GG, Ko JL, et al. Kaempferol protects against propacetamol-induced acute liver injury through CYP2E1 inactivation, UGT1A1 activation, and attenuation of oxidative stress, inflammation and apoptosis in mice. Toxicol Lett 2018;290:97-109.
38. Wang Y, Chen P, Tang C, Wang Y, Li Y, Zhang H. Antinociceptive and anti-inflammatory activities of extract and two isolated flavonoids of carthamustinctorius L. J Ethnopharmacol 2014;151:944-50.
39. Ramaiah SK. Preclinical safety assessment current gaps, challenges and approaches in identifying translatable biomarkers of drug-induced liver damage. Clin Lab Med 2011;31:161–72.
40. Prabu PC, Panchapakesan S, Raj CD. Acute and sub-acute oral toxicity assessment of the hydroalcoholic extract of Withaniasomniferaroots in wistar rats. Phytother Res 2013;27:1169–78.
41. Di Rosa M, Giroud JP, Willoughby DA. Studies on the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J Pathol 1971;104:15-29.
42. Vinegar R, Schreiber W, Hugo RJ. Biphasic development of carrageenin edema in rats. J Pharmacol Exp Ther 1969;166:96-103.
43. Vinegar R, Truax JF, Selph JL, Johnston PR, Venable AL, McKenzie KK. Pathway to carrageenan-induced inflammation in the hindlimb of the rat. Fed Prod 1987;46:118-26.
44. Winter CA, Porter CC. Effect of alterations in the side chain upon anti-inflammatory and liver glycogen activities of hydrocortisone esters. J Am Pharm Assoc 1957;46:515-9.
45. Meshram GG, Kumar A, Rizvi W, Tripathi CD, Khan RA. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of albizzialebbeck in rats. J Tradit Complement Med 2015;6:172-5.
46. Garcia Lafuente A, Guillamon E, Villares A, Rostagno MA, Martinez JA. Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflam Res 2009;58:537-52.
47. Kadioglu O, Nass J, Saeed ME, Schuler B, Efferth T. Kaempferol is an anti-inflammatory compound with activity towards NF-?B pathway proteins. Anticancer Res 2015;35:2645-50.
48. Lee HB, Kim EK, Park SJ, Bang SG, Kim TG, Chung DW. Isolation and anti-inflammatory effect of astragalin synthesized by enzymatic hydrolysis of tea seed extract. J Sci Food Agric 2011;91:2315-21.
49. Barbosa P. An overview on the biological and pharmacological activities of saponins. Int J Pharm Pharm Sci 2014;6:47-50.
50. Matsuda H, Samukawa K, Kubo M. Anti-inflammatory activity of ginsenoside Ro1. J Planta Med 1990;56:19-23.
51. Haridas V, Arntzen CJ, Gutterman JU. Avicins, a family of triterpenoid saponins from acacia victoriae (Bentham), inhibit activation of nuclear factor-kappa B by inhibiting both its nuclear localization and ability to bind DNA. Proc Natl Acad Sci 2001;98:11557–62.
52. Zhao J, Fang F, Yu L, Wang G, Yang L. Anti-nociceptive and anti-inflammatory effects of croton crassifolius ethanol extract. J Ethnopharmacol 2012;142:367-73.
53. Temponi Vdos S, Da Silva JB, Alves MS, Ribeiro A, De Jesus Ribeiro Gomes de Pinho J, Yamamoto CH, et al. Antinociceptive and anti-inflammatory effects of ethanol extract from vernoniapolyanthes leaves in rodents. Int J Mol Sci 2012;13:3887-99.
54. Xu Q, Wang Y, Guo S, Shen Z, Wang Y, Yang L. Anti-inflammatory and analgesic activity of aqueous extract of flospopuli. J Ethnopharmacol 2014;152:540-55.
55. Hiruma Lima C, Gracioso J, Bighetti E, Germonsen Robineou L, Souza Brito A. The juice of fresh leaves of Boerhaaviadiffusa L. (Nyctaginaceae) markedly reduces pain in mice. J Ethnopharmacol 2000;71:267–74.
56. Zakaria ZA, Ghani ZDFA, Nor RNSRM, Gopalan HK, Sulaiman MR, Jais AMM, et al. Antinociceptive, anti-inflammatory, and antipyretic properties of an aqueous extract of dicranopterislinearis leaves in experimental animal models. J Nat Med 2008;62:179–87.
57. Eldahshan OA, Abdel-Daim MM. Phytochemical study, cytotoxic, analgesic, antipyretic and anti-inflammatory activities of strychnosnux-vomica. Cytotechnology 2015;67:831-44.
58. Parveen Z, Deng Y, Saeed R, Dai MK, Ahamad W, Yu YH. Antiinflammatory and analgesic activities of thesiumchinense turcz extracts and its major flavonoides, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi 2007;127:1275-9.
59. Hernandez Leon A, Fernandez Guasti A, Gonzalez Trujano ME. Rutinantinociception involves opioidergic mechanism and descending modulation of ventrolateral periaqueductal grey matter in rats. Eur J Pain 2016;20:274-83.
60. Ganeshpurkar A, Saluja A. The pharmacological potential of rutin. Saudi Pharm J 2017;25:149-64.
61. Steen KH, Reeh PW, Kreysel HW. Topical acetylsalicylic, salicylic acid and indomethacin suppress pain from experimental tissue acidosis in human skin. Pain 1995;62:339-47.
62. Corazzi T, Leone M, Maucci R, Corazzi L, Gresele P. Direct and irreversible inhibition of cyclooxygenase-1 by nitroaspirin (NCX 4016). J Pharmacol Exp Ther 2005;315:1331-7.
63. Choi J, Jung HJ, Lee KT, Park HJ. Antinociceptive and anti-inflammatory effects of the saponin and sapogenins obtained from the stem of akebiaquinata. J Med Food 2005;8:78-85.
64. Arrau S, Delporte C, Cartagena C, Rodriguez Diaz M, Gonzalez P, Silva X, et al. Antinociceptive activity of quillajasaponaria mol saponin extract, quillaic acid and derivatives in mice. J Ethnopharmacol 2011;133:164-7.
65. Yassin NZ, Melek FR, Selim MA, Kassem IAA. Pharmacological activities of saponin containing fraction derived from gleditsiacaspica desfmethanolic fruit extract. Pharm Lett 2013;5:247–53.
66. Saleh DO, Kassem I, Melek FR. Analgesic activity of gleditsia triacanthos methanolic fruit extract and its saponin-containing fraction. Pharm Biol 2016;54:576-80.
Statistics
65 Views | 59 Downloads
Citatons
How to Cite
BENMAAROUF, D. K., D. C. G. A. PINTO, B. CHINA, S. ZENIA, K. B. BENDESARI, and M. H. BEN-MAHDI. “CHEMICAL ANALYSIS, ANTIOXIDANT, ANTI-INFLAMMATORY AND ANTINOCICEPTIVE EFFECTS OF ACETONE EXTRACT OF ALGERIAN SOLENOSTEMMA ARGEL (DELILE) HAYNE LEAVES”. International Journal of Current Pharmaceutical Research, Vol. 12, no. 5, Sept. 2020, pp. 72-81, doi:10.22159/ijcpr.2020v12i5.39771.
Section
Original Article(s)