• SYED SAIF IMAM Department of Pharmaceutical Sciences HIMT College of Pharmacy, 8, Institutional Area, Knowledge Park-1, Greater Noida (UP), India 201301
  • SYEDA TUBA IMAM Department of Obstetrics and Gynaecology JLNMCH Mayaganj, Bhagalpur, Bihar, India 812001
  • MDWASIFATHAR Department of Pharmaceutical Sciences, LLOYD College of Pharmacy, 11, Knowledge Park-2, Greater Noida (UP), India 201306
  • RISHABH KUMAR Department of Pharmaceutical Sciences HIMT College of Pharmacy, 8, Institutional Area, Knowledge Park-1, Greater Noida (UP), India 201301
  • MD YUSUF AMMAR Department of Pharmaceutical Sciences HIMT College of Pharmacy, 8, Institutional Area, Knowledge Park-1, Greater Noida (UP), India 201301



EGCG, Theaflavins, Covid-19, ACE-2 receptors, GRP78 receptors, RdRP


Covid Virus particles engage with host cells via the ACE-2 and GRP78 receptors, transferring the genome particle to the host cell and transforming it into a replicating machine. RdRP is a key protein in the replication mechanism of all RNA viruses. 3CLpro is a cleavage enzyme that breaks down polyproteins into non-structural polyproteins. All four elements of the Covid viral particle are required for its propagation and action, and blocking any one of them can shut down the entire system. EGCG and Theaflavins are flavonoids that block virus particles from attaching to the host cell's ACE-2 and GRP78 receptors, preventing the genome from being transferred into the cell. EGCG binds to 3CLpro with a molecular docking value of 11.7, while TF3 has a docking score of 10.574, indicating that it prevents host cell contact. TF binds to RdRP with a binding energy of 9.11 kcal/mol, implying that RdRP activities are interfered with. Furthermore, these flavonoids have anti-inflammatory properties and reduce the action of cytokines, which can cause serious respiratory difficulties. Except these two there are many others flavonoids which possess anti-inflammatory and anti-viral properties. All of these data suggest that flavonoids could be a useful treatment for SARS-CoV19; however, the issue of stability and bioavailability arises because it is unstable at lungs pH.


Download data is not yet available.

References [Last accessed on 18 Feb 2022]

Roberts NJ, McAloney-Kocaman K, Lippiett K, Ray E, Welch L, Kelly C. Levels of resilience, anxiety and depression in nurses working in clinical respiratory areas during the COVID pandemic. Respir Med. 2021 Jan 1;176:106219. doi: 10.1016/j.rmed.2020.106219.

Benitez Cardoza CG, Vique Sanchez JL. Potential inhibitors of the interaction between ACE2 and SARS-CoV-2 (RBD), to develop a drug. Life Sci. 2020 Sep 1;256:117970. doi: 10.1016/j.lfs.2020.117970.

Sudeep HV, Gouthamchandra K, Shyamprasad K. Molecular docking analysis of withaferin a from withaniasomnifera with the glucose regulated protein 78 (GRP78) receptor and the SARS-CoV-2 main protease. Bioinformation. 2020;16(5):411-7. doi: 10.6026/97320630016411, PMID 32831523.

Swaim CD, Perng YC, Zhao X, Canadeo LA, Harastani HH, Darling TL, Boon ACM, Lenschow DJ, Huibregtse JM. 6-Thioguanine blocks SARS-CoV-2 replication by inhibition of PLpro protease activities. Biorxiv. 2020 Jan 1. doi: 10.1101/2020.07.01.183020, PMID 32637945.

Slanina H, Madhugiri R, Bylapudi G, Schultheiß K, Karl N, Gulyaeva A, Gorbalenya AE, Linne U, Ziebuhr J. Coronavirus replication–transcription complex: vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRP subunit. Proc Natl Acad Sci USA. 2021 Feb 9;118(6). doi: 10.1073/pnas.2022310118, PMID 33472860.

Bo XU, Fan CY, Wang AL, Zou YL, Yu YH, Cong HE, Xia WG, Zhang JX, Qing MI. Suppressed T cell-mediated immunity in patients with COVID-19: a clinical retrospective study in Wuhan, China. J Infect. 2020 Jul 1;81(1):e51-60.

Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289-93. doi: 10.1038/s41586-020-2223-y. PMID 32272481.

Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Wang T, Sun Q, Ming Z, Zhang L, Ge J, Zheng L, Zhang Y, Wang H, Zhu Y, Zhu C, Hu T, Hua T, Zhang B, Yang X, Li J, Yang H, Liu Z, Xu W, Guddat LW, Wang Q, Lou Z, Rao Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020 May 15;368(6492):779-82. doi: 10.1126/science.abb7498, PMID 32277040.

Zhang SY, Lian JS, Hu JH, Zhang XL, Lu YF, Cai H, Gu JQ, Ye CY, Jin CL, Yu GD, Jia HY, Zhang YM, Sheng JF, Li LJ, Yang YD. Clinical characteristics of different subtypes and risk factors for the severity of illness in patients with COVID-19 in Zhejiang, China. Infect Dis Poverty. 2020 Dec;9(1):85. doi: 10.1186/s40249-020-00710-6, PMID 32641121.

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020 Mar 17;94(7):e00127-20. doi: 10.1128/JVI.00127-20, PMID 31996437.

Hoffmann M, Kleine Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pohlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052, PMID 32142651.

Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur Respir J. 2020;55(4). doi: 10.1183/13993003.00607-2020, PMID 32269085.

Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: a review. J Infect Public Health. 2020 Jul 14;13(11):1619-29. doi: 10.1016/j.jiph.2020.07.001, PMID 32718895.

Ong EZ, Chan YFZ, Leong WY, Lee NMY, Kalimuddin S, Haja Mohideen SM, Chan KS, Tan AT, Bertoletti A, Ooi EE, Low JGH. A dynamic immune response shapes COVID-19 progression. Cell Host Microbe. 2020 Jun 10;27(6):879-82.e2. doi: 10.1016/j.chom.2020.03.021, PMID 32359396.

Nagle DG, Ferreira D, Zhou YD. Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry. 2006 Sep 1;67(17):1849-55. doi: 10.1016/j.phytochem.2006.06.020, PMID 16876833.

Liang R, Chen L, Yokoyama W, Williams PA, Zhong F. Niosomes consisting of tween-60 and cholesterol improve the chemical stability and antioxidant activity of (−)-epigallocatechin gallate under intestinal tract conditions. J Agric Food Chem. 2016 Dec 7;64(48):9180-8. doi: 10.1021/acs.jafc.6b04147, PMID 27933988.

Thakur VS, Gupta K, Gupta S. Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases. Carcinogenesis. 2012 Feb 1;33(2):377-84. doi: 10.1093/carcin/bgr277, PMID 22114073.

Larsen CA, Bisson WH, Dashwood RH. Tea catechins inhibit hepatocyte growth factor receptor (MET kinase) activity in human colon cancer cells: kinetic and molecular docking studies. J Med Chem. 2009 Nov 12;52(21):6543-5. doi: 10.1021/jm901330e, PMID 19839593.

Intra J, Kuo SM. Physiological levels of tea catechins increase cellular lipid antioxidant activity of vitamin C and vitamin E in human intestinal caco-2 cells. Chem Biol Interact. 2007 Aug 30;169(2):91-9. doi: 10.1016/j.cbi.2007.05.007, PMID 17603031.

Raekiansyah M, Buerano CC, Luz MAD, Morita K. Inhibitory effect of the green tea molecule EGCG against dengue virus infection. Arch Virol. 2018 Jun;163(6):1649-55. doi: 10.1007/s00705-018-3769-y, PMID 29429035.

Lu JW, Hsieh PS, Lin CC, Hu MK, Huang SM, Wang YM, Liang CY, Gong Z, Ho YJ. Synergistic effects of combination treatment using EGCG and suramin against the Chikungunya virus. Biochem Biophys Res Commun. 2017 Sep 23;491(3):595-602. doi: 10.1016/j.bbrc.2017.07.157, PMID 28760340.

Ge M, Xiao Y, Chen H, Luo F, Du G, Zeng F. Multiple antiviral approaches of (–)-epigallocatechin-3-gallate (EGCG) against porcine reproductive and respiratory syndrome virus infection in vitro. Antiviral Res. 2018 Oct 1;158:52-62. doi: 10.1016/j.antiviral.2018.07.012, PMID 30048655.

Reid SP, Shurtleff AC, Costantino JA, Tritsch SR, Retterer C, Spurgers KB, Bavari S. HSPA5 is an essential host factor for Ebola virus infection. Antiviral Res. 2014 Sep 1;109:171-4. doi: 10.1016/j.antiviral.2014.07.004, PMID 25017472.

Rrapo E, Zhu Y, Tian J, Hou H, Smith A, Fernandez F, Tan J, Giunta B. Green Tea-EGCG reduces GFAP associated neuronal loss in HIV-1 Tat transgenic mice. Am J Transl Res. 2009;1(1):72-9. PMID 19966940.

Song JM, Lee KH, Seong BL. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res. 2005 Nov 1;68(2):66-74. doi: 10.1016/j.antiviral.2005.06.010, PMID 16137775.

Cabrera C, Artacho R, Gimenez R. Beneficial effects of green tea-a review. J Am Coll Nutr. 2006 Apr 1;25(2):79-99. doi: 10.1080/07315724.2006.10719518, PMID 16582024.

Betts JW, Kelly SM, Haswell SJ. Antibacterial effects of theaflavin and synergy with epicatechin against clinical isolates of acinetobacter baumannii and stenotrophomonas maltophilia. Int J Antimicrob Agents. 2011 Nov 1;38(5):421-5. doi: 10.1016/j.ijantimicag.2011.07.006, PMID 21885260.

Brimson JM, Prasanth MI, Malar DS, Sharika R, Sivamaruthi BS, Kesika P, Chaiyasut C, Tencomnao T, Prasansuklab A. Role of herbal teas in regulating cellular homeostasis and autophagy and their implications in regulating overall health. Nutrients. 2021 Jul;13(7):2162. doi: 10.3390/nu13072162, PMID 34201882.

Aneja R, Odoms K, Denenberg AG, Wong HR. Theaflavin, a black tea extract, is a novel anti-inflammatory compound. Crit Care Med. 2004 Oct 1;32(10):2097-103. doi: 10.1097/ 01.ccm.0000142661.73633.15, PMID 15483420.

Yang Z, Jie G, Dong F, Xu Y, Watanabe N, Tu Y. Radical-scavenging abilities and antioxidant properties of theaflavins and their gallate esters in H2O2-mediated oxidative damage system in the HPF-1 cells. Toxicol In Vitro. 2008 Aug 1;22(5):1250-6. doi: 10.1016/j.tiv.2008.04.007, PMID 18502093.

Yang J, Li L, Tan S, Jin H, Qiu J, Mao Q, Li R, Xia C, Jiang ZH, Jiang S, Liu S. A natural theaflavins preparation inhibits HIV-1 infection by targeting the entry step: potential applications for preventing HIV-1 infection. Fitoterapia. 2012 Mar 1;83(2):348-55. doi: 10.1016/j.fitote.2011.11.016, PMID 22155187.

Berkefeld CJ. In vitro synergistic antiviral activity of black tea theaflavins and acyclovir on herpes simplex virus types 1 and 2. Cells 2020;A549.

Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, Jiang ZH. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia. 2014 Mar 1;93:47-53. doi: 10.1016/j.fitote.2013.12.011, PMID 24370660.

Chowdhury P, Sahuc ME, Rouille Y, Riviere C, Bonneau N, Vandeputte A, Brodin P, Goswami M, Bandyopadhyay T, Dubuisson J, Seron K. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLOS ONE. 2018 Nov 28;13(11):e0198226. doi: 10.1371/journal.pone.0198226, PMID 30485282.

Okada F, Takeo T, Okada S, Tamemasa O. Antiviral effect of theaflavins on tobacco mosaic virus. Agric Biol Chem. 1977;41(5):791-4.

Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Evaluation of green tea polyphenols as novel coronavirus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. J Biomol Struct Dyn. 2020 Jun 20:1-12.

Mhatre S, Naik S, Patravale V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Comput Biol Med. 2021 Feb 1;129. doi: 10.1016/j.compbiomed.2020.104137, PMID 104137.

Park J, Park R, Jang M, Park YI. Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases. Life (Basel). 2021 Mar;11(3):197. doi: 10.3390/life11030197, PMID 33806274.

Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, Liu HT, Wu CY. The potential chemical structure of anti‐SARS‐CoV‐2 RNA‐dependent RNA polymerase. J Med Virol. 2020 Jun;92(6):693-7. doi: 10.1002/jmv.25761, PMID 32167173.

Zhang JJ, Shen X, Yan YM, Yan WA, Cheng YX. Discovery of anti-SARS-CoV-2 agents from commercially available flavor via docking screening. Comb Chem High Throughput Screen 2021;24(3):441-54. doi: 10.2174/1386207323999200730205447

Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review. Phytomedicine. 2021 May 1;85:153286. doi: 10.1016/j.phymed.2020.153286.

Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect. 2020 May 1;80(5):554-62. doi: 10.1016/j.jinf.2020.02.026, PMID 32169481.

Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints. 2020 Mar 13;2020. PMID 2020030226.

Adem S, Eyupoglu V, Sarfraz I, Rasul A, Ali M. Identification of potent COVID-19 main protease (Mpro) inhibitors from natural polyphenols: an in silico strategy unveils a hope against CORONA; 2020.

Ngwa W, Kumar R, Thompson D, Lyerly W, Moore R, Reid TE, Lowe H, Toyang N. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules. 2020 Jan;25(11):2707. doi: 10.3390/molecules25112707, PMID 32545268.

Chikhale RV, Gupta VK, Eldesoky GE, Wabaidur SM, Patil SA, Islam MA. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J Biomol Struct Dyn. 2020 Jul 31:1-6.

Alzaabi MM, Hamdy R, Ashmawy NS, Hamoda AM, Alkhayat F, Khademi NN, Al Joud SMA, El-Keblawy AA, Soliman SSM. Flavonoids are promising safe therapy against COVID-19. Phytochem Rev. 2021 May 22:1-22. doi: 10.1007/s11101-021-09759-z, PMID 34054380.



How to Cite

IMAM, S. S., S. T. IMAM, MDWASIFATHAR, R. KUMAR, and M. Y. AMMAR. “INTERACTION BETWEEN ACE 2 AND SARS-COV2, AND USE OF EGCG AND THEAFLAVIN TO TREAT COVID 19 IN INITIAL PHASES”. International Journal of Current Pharmaceutical Research, vol. 14, no. 2, Mar. 2022, pp. 5-10, doi:10.22159/ijcpr.2022v14i2.1945.



Review Article(s)