EMERGING THERAPY FOR DENGUE

TAYADE M. R.1*, SHINKAR D. M.1, PATIL P. B.1, SAUDAGAR R. B.2

1Department of Pharmaceutics, R. G. Sapkal College of Pharmacy, Anjaneri, Nashik 422213, Maharashtra, India, 2Department of Pharmaceutical Chemistry, R. G. Sapkal College of Pharmacy, Anjaneri, Nashik 422213, Maharashtra, India.

Email: monalitayademt@gmail.com

ABSTRACT

Dengue fever is an acute febrile disease, it's caused by one of four closely related virus serotypes of the genus are Flavivirus, family Flaviviridae. Each serotype is sufficiently different that there is no cross-protection and epidemics caused by multiple serotypes can occur. It's transmitted to humans by the mosquito. The incidence of dengue has grown around the world in recent a period of ten years. However, several classes of agents are in under investigation as potential anti-dengue drugs, including direct host modulators, antivirals, and RNAi therapeutics. These anti-dengue drugs in development will be reviewed here.

Keywords: Dengue viruses, Aedes mosquito, Treatment

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
DOI: http://dx.doi.org/10.22159/ijcpr.2018v10i2.25848

INTRODUCTION

Dengue fever is the fastest emerging arboviral infection spore. Dengue has the most important arboviral infection world with more than 30 million. Dengue fever estimated to occur each year. The dengue virus is the cause of dengue fever. Dengue viruses are arthropod borne viruses (arboviruses) in the genus Flavivirus [1]. (Family flaviviridae) with the positive polarity. Single-stranded RNA. is utilized Aedes (stegomyia) spp primarily. Albopticus as vector for domatic and peridomastri transmission. And arboreal Aedes vector for enzootic transmission of the flavivirus genus including other important pathogens such as yellow fever. Dengue viruses are the causative agent of a dengue fever. Its genome is about 11000 bases that the codes for three structural proteins (Membrane protein M, capsid protein C, and envelope protein E) and seven nonstructural proteins it's also including the short non-coding reign on both the 5 and 3 ends. The dengue virus genome is 11644 nucleotides in length, and is composed of three structural protein genes encoding the core protein (C), envelope protein (E), a membrane-associated protein (M), and seven nonstructural protein (NS) genes. Non-structural proteins is enveloped by glycoprotein, NS1 is of diagnostic and pathological importance. It is a 45 kDa in size and associated with viral haemagglutination and neutralization activity [2, 3].

History

In the 18th century, dengue has caused repeated epidemics worldwide [2]. H. Graham in 1903 implicated Aedes aegypti as the vector for the disease and the virus was isolated in 1944 by Albert Sabin et al. Dengue haemorrhagic fever gained nosologic status in 1954 and subsequently it's became an endemic in many areas of tropical Asia. India belongs to category B, where dengue is an emerging disease with cyclical epidemics becoming more frequent [1, 2].

Dengue fever [1]

Dengue fever (DF) and its severe forms dengue hemorrhagic fevers (DHF) and dengue shock syndromes (DSS) have become major international public health concerns. Dengue is the most prevalent arthropod-borne viral illness in humans, with the half of the world population at risk for infection and up to 50 million cases of dengue estimated each year. Dengue fever is also known as break bone fever is a mosquito borne tropical disease it's caused by the dengue viruses. The dengue has transmitted by the several species of mosquito the genus is Aedes, The virus has five different types, and usually it gives long-life immunity to that type but only short-term immunity to the other subsequent infection with a different types increase the risk of several complication.

Causes

It is caused by a virus [Dengue Virus], which has got four different types (Type I, II, III, IV). Common name of the disease is “break bone fever”[Haddi Tod Bukhar] because of severe body and joint pains produced [1].

Spread

The Dengue virus is present in the blood of the patient. Suffering from Dengue fever. Whenever an aedesmosquitoes bites a patient of dengue fever, it sucks blood and, the dengue viruses enters into its body. The virus undergoes further development of in the body of the mosquito for a few days. When the virus containing mosquito bites a normal human being [Healthy person], the virus is injected into the Healthy person body and he/she becomes infected and can develop the symptoms of dengue fever [1].
Dengue activity, and because of the shorter projected treatment courses (2-3 months) in combination with pegylated interferon-α2b, clinical trials were stopped due to toxicity during extended treatment courses [8].

Balapiravir was initially developed for the treatment of HCV, but which it must be triphosphorylated for conversion into active form.

Balapiravir (RG1626) is a prodrug of a nucleoside analog, R1479, a synthetic guanosine analog which inhibits inosine monophosphate dehydrogenase with resulting GTP pool depletion but has multiple additional proposed mechanisms of action, including antiviral genes. Ribavirin use has been limited by toxicity of both oral formulations and aerosolized, decreasing its clinical efficacy [14].

Ribavirin

Ribavirin is a broad acting inhibitor of DNA and RNA viruses. It is a synthetic guanosine analog which inhibits inosine monophosphate dehydrogenase with resulting GTP pool depletion but has multiple additional proposed mechanisms of action, including antiviral genes. Ribavirin use has been limited by toxicity of both oral formulations and aerosolized, decreasing its clinical efficacy [14].

Methods of bioanalysis for anti-dengue activity [4, 5]

Pre-clinical

Dengue is a positive stranded RNA virus with an 11kb genome, encoding a polyprotein precursor cleaved to generate at least 10 proteins, including three structural proteins (core, membrane associated protein, and envelope protein), and seven nonstructural proteins (NS1, NS2a, NS2b, NS3, NS4b, NS5). DENV is transmitted by silent, urban mosquito vectors. Including A. aegypti and Aedes aegypti, A. polynesiensis and A. scutellaris, to man. Other modes of transmission include via blood products, vertical transmission and organ transplant.

In man, the initial cellular target of dengue is thought to be dendritic cells, followed by lymphatic spread and then distribution to macrophages and monocytes. The full host of cells infected in vivo remain a subject of investigation, but may also include hepatocytes, myocytes, and other cell types [8].

Clinical

Clinical methods for evaluation of anti-dengue effects are development. A major hurdle facing DENV clinical trials is the need for establishment of accurate diagnostic testing for case identification. The current diagnostics for DENV available in the US and other high resource countries (IgM and IgG ELISA, PCR) are limited by a requirement for skilled workers, specialized and refrigeration, equipment [9].

Current point-of-care (POC) diagnostic tests for DENV. Based on lateral flow detection of secreted IgM and DENV NS1 protein in plasma/serum/blood or saliva IgA [8, 9].

Treatment

Agents in development for anti-dengue activity

Nucleoside analogues

Balapiravir (RG1626) is a prodrug of a nucleoside analog, R1479, which has been triphosphorylated for conversion into active form. Balapiravir was initially developed for the treatment of HCV, but clinical trials were stopped due to toxicity during extended treatment courses (2-3 months) in combination with pegylated interferon and ribavirin. Because R1479 displayed in vitro anti-dengue activity, and because of the shorter projected treatment duration for acute dengue infection (limiting toxicity), anti-dengue effects of balapiravir were explored in a phase II clinical trial [11].

RNA dependent RNA polymerase (NS5) inhibitors

N-sulfonylanthranilic acid derivatives were identified as DENV RdRp inhibitors through screening of one million compound. The identified hit was found to bind DENV NS5 at the site of entrance to the RNA tunnel. While this specific compound is not under further development, the concept of inhibiting polymerase through the tunnel as well as other allosteric pockets is being pursued [10].

BP13944

A screen of 60,000 chemical compounds in a DENV serotype 2 luciferase harboring replicon (BHK-21 cells). Its recently identified BP13944, a quaternary ammonium salt, as an NS3 protease inhibitor [12].

Protease (NS2b-NS3) inhibitors

Recombinant retrovirdin 1. Rothan et al. produced recombinant NS2b-NS3 protease in E. coli and identified recombinant retrovirdin 1, a cationic cyclic peptide theta defensing analogue with anti-HIV activity. A potent DENV protease inhibitor [8].

α-ketoamides

Electrophilic trap for the serine component of the DENV NS2b-NS3 serine protease, and have identified α-ketoamides as DENV protease inhibitors [8].

Quinoline containing compounds

Using virtual screening for DENV protease inhibitors followed by scaffold hopping to expand chemical diversity, then a DENV luciferase reporter replicon assay, Deng et al. have described 17 new compounds with NS2b-NS3 protease inhibitor activity, which can now serve as potential lead structures for further discovery efforts [8].

NS4b inhibitor

Van Cleeft et al. recently screened the NIH Clinical Collection of drug-like small molecule for anti-DENV activity in HeLa cells harboring a sub genomic DENV2-replicon reporter and identified the δ opioid receptor antagonist SDM25N as potent DENV inhibitor [8].

Translation inhibitors

A high throughput screen for reduction or elimination of DENV CPE and identified benzomorphan compounds that inhibit DENV through suppression of RNA translation and also inhibit DENV viremia in mice, though higher doses were limited by toxicity.

Methyl transferase (NS5) inhibitors

Using a fragment-based drugdiscovery approach, recently screened 500 drug-likefragments by thermal-sift assay for binding to the DENV NS5 helicase or NS5 methyltransferase, and identified 7 validated MTase binders, each containing 5-6 membered amicaric rings.

Capsid inhibitor

A high throughput small molecule screen with readout of DENV CPE and identified benzomorphan compounds that inhibit DENV through suppression of RNA translation and also inhibit DENV viremia in mice, though higher doses were limited by toxicity.

Several groups have recently proposed the use of peptide inhibitors to block DENV infection. For example, Lok et al. have identified the mimetic peptide D5N5, which corresponds to a region of the dengue virus envelope protein, as an inhibitor of all four serotypes of dengue virus.

Host modulators

This property in attempts to inhibit viral replication through deprivation of these required host factors, or dependency factors. This strategy, targeting host factors to impede dengue viral infection [13].

Ribavirin

Ribavirin is a broad acting inhibitor of DNA and RNA viruses. It is a synthetic guanosine analog which inhibits inosine monophosphate dehydrogenase with resulting GTP pool depletion but has multiple additional proposed mechanisms of action, including antiviral genes. Ribavirin use has been limited by toxicity of both oral formulations and aerosolized, decreasing its clinical efficacy [14].
Mycophenolic acid

The immunosuppressive agent mycophenolic acid, and a nonnucleoside inhibitor of IMP dehydrogenase, has also been shown to inhibit dengue in cell culture, reproduced in four hepatoma cell lines, by the preventing synthesis and accumulation of viral RNA.

Agents that target host mediated post translational modifications

A Glycosidase inhibitors

α glycosidase inhibitors include in the naturally occurring iminosugar castanospermine and deoxyxojirimycin, isolated from Bacillus. Castanospermine was found to inhibit infection with all four DENV serotypes in vitro, and also to prevent dengue mortality in an DENV mouse model [8].

Lovastatin

Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, used for the lipid lowering and mortality reduction into the cardiovascular disease, and have an excellent safety profile. Statins have been found to exhibit anti-DENV properties in both cellculture and mouse models. A clinical trial examining the safety and antiviral properties of lovastatin in adult patients is now ongoing in Vietnam [8, 9].

Vitamin D

Treatment of both monocytic (U937) and hepatic cells with 1α, 25 -dihydroxy-vitamin D3 was associated with decreased levels of DENV infection.

Host kinase inhibitors

Using an immunofluorescence imagebased assay suitable for identification of a small molecule inhibitors of dengue virus infection and replication.

Heparin and heparan sulfate

It is interesting to note that highly sulfated heparan sulfate is involved in the initial interactions between the DENV E glycoproteins and the host cell, heparin and heparan sulfate like molecules have been found to have anti-DENV properties.

Viral sensor (RIG-I and TLR3) agonists

The innate immune system includes the detection of viral RNA by the helicase domain of RIG-I. A synthetic 5’ triphosphate (5’ppp) RNA was designed to stimulate this host innate immune response as an antiviral therapeutic, and was found to have anti DENV effects when transfected into A549 cells as well as primary human monocytes prior to DENV infection.

Interferon

The type 1 IFNs it’s, including the IFNa, are among the broadest acting antiviral IFNα is a current component of a anti-HCV therapy and has also been used for hepatitis B, severe acute respiratory syndrome, and Severe viral infection is the result of subversion of the host immune response, rendering that response ineffective. A major common pathway of viral infection is the escape of suppression of the IFNα pathway. While IFN mechanisms vary from virus to virus, activation of IFN effectors downstream of viral subversion. May identify the common drug targets for restoration of an effective hostantiviral response. Although it will be possible to reduce reliance on IFNα in HCV treatment regimens, understanding the mechanism of this broad-acting antiviral will inform design of agents active against many viruses, such as DENV, that antagonize IFNα and for which no current treatment are available [15].

IEG activation will circumvent viral subversion of IFN signaling [16]

In general, IFNα can successfully inhibit the DENV if given preinfection, but not post-infection, and due to DENV mediated suppression of early members of the IFN signaling pathway, though some antiviral effect was observed in post-infection administration of PEGIFN-alpha-2a, which significantly lowered daily viremia levels and improved virus clearance, in rhesus monkey. Defining where viruses block, or the host IFN response can inform design of antivirals that acsodownstream of that block. In preliminary studies, we have to identify 120 host antiviral candidates in a whole genome siRNA screen for HCV IEGs.
DENV itself, RNA-mediated suppression of viral dependency factors, or factor is required by the virus for productive infection, has been shown to inhibit DENV. There are currently no RNAi agents registered under clinicaltrials.gov when searched with dengue [18].

Morpholinos

Taking advantage of RNA-protein interactions required for the DENV replication, antisense peptide-conjugated phosphor-rodiamidate morpholino oligomers (P-PMOs) have been designed to sterically interfere with these interactions.

Other compounds

Other agents that have been suggested to display anti-dengue activity including genetic in, an aminoglycoside antibiotic, which has been found to have the unique property, among aminoglycosides, of inhibiting DENV and FCI 106, a compound of unknown mechanism identified in a screen for anti-Ebola agents, which has also been found to have anti-DENV activity, in DC-SIGN cells [8].

Medicinal plant derivatives [19]

There is a significant amount of the research dedicated to a hypothesis driven and practice-based identification of a naturally occurring compounds with the anti-dengue properties. It is the important to note that many of the compounds examined in these studies are selected because they are already in used against dengue in traditional settings, underscoring the need to examine their effect on dengue-related outcomes, regardless of whether they will be assessed for drug development.

CONCLUSION

Dengue is emerging as a global treat and is pressing public health priority in many countries. The government and the pharmaceutical industries have been taking initiative to develop new strategies to improve the diagnosis and treatment of dengue. The challenge here lies in how effectively the strategies developed are put into use. There also an obligatory need to globalize awareness and precautionary measures among the masses in order to control the incidence. Combined efforts of the health care industries, governing bodies and efforts at individual level would help us to tackle the prevalence of dengue.

AUTHORS CONTRIBUTIONS

All the author have contributed equally

CONFLICT OF INTERESTS

Declared none

REFERENCES