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ABSTRACT

The aim of this work is to develop passive target tracking algorithm, suitable for implementation in target motion analysis for underwater applications. 
The vehicle is assumed to be standstill in underwater watching for any target ship using bearings-only measurements. Using these measurements, the 
algorithm calculates the course of the target, which is further used to find out target range and speed. Provision is given to generate range and course 
if the speed of the target is known by some other means. Pseudo linear estimator (PLE) is developed to reduce the noise in the measurements and to 
find out target motion parameters. Although PLE offers a biased estimate in certain scenarios, it has an advantage as it hardly diverges. It offers the 
features of Kalman filter, viz., sequential processing, flexibility to adopt the variance of each measurement, etc. The Monte Carlo simulation results are 
presented for a typical scenario, and it is shown that this algorithm is useful for naval underwater applications.

Keywords: Target motion analysis, Doppler, Estimation, Sonar, Active signal transmission, Maritime, Line of sight measurements.

INTRODUCTION

In the ocean environment, two-dimensional bearings-only target motion 
analysis (TMA) is generally used. The underwater vehicle monitors 
noisy sonar bearings from a radiating target in passive listening 
mode and processes these measurements to find out target motion 
parameters (TMPs), viz., range, course, bearing, and speed of the target. 
As range measurement is not available and the bearing measurement 
is not linearly related to the target states, the whole process becomes 
nonlinear. Added to this, since bearing measurements are extracted 
from single passive sonar, the process remains unobservable until 
observer executes a proper maneuver.

Many researchers tried to eliminate this requirement of ownship 
maneuver to obtain the TMPs, using Doppler shifted tonal 
frequencies  [1-3], elevation measurements [4], and one active range 
measurement along with bearing measurements [5]. I  would like to 
introduce a new method, motivated by the paper written by Chan and 
Rea [5]. In this method, ownship maneuver is not required.

Section 2 describes the mathematical modeling of the pseudo linear 
formulation with sequential implementation. Simulation and results are 
presented in Section 3, and finally, the paper is concluded in Section 4.

MATHEMATICAL MODELING

It is desired to track the target using noise-corrupted bearing 
measurements. The target state equation is given by Nardone et al. [8].

Xs(k+1)=ϕ(k+1,k) Xs(k)+b(k+1)� (1)

Where, Xs (k) is a state vector with target velocity and position 
components and is given by
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ϕ(k+1|k) is a transient matrix and t is the sampling time between two 
successive measurements. The transient matrix is given by,
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The deterministic vector, b(k+1) is given by,

b k 1 x k x k y k y k+( ) = − + − − + − 0 0 1 10 0 0 0{ ( ) ( )} { ( ) ( )} � (4)

The bearing measurement is given by,

B(k)=tan−1(Rx(k)/Ry(k))� (5)

Where, Rx(k) and Ry(k) are the relative range components at instant k. 
Here, bearing Bm(k) is considered with respect to true north and is 
given by,

Bm(k)=B(k)+η(k)� (6)

Where, η(k) is error in the measurement and is assumed to be zero 
mean Gaussian with variance σ2. I  would like to find out TMP in two 
modes. In the first mode, the vehicle is assumed to be standstill and the 
second mode it is assumed to be moving. Let us find out TMP in the first 
mode. In this mode, b(k+1) in equation (1) becomes zero. Substituting 
equation (5) in (6), we obtain,

Rx (k)cos Bm (k)−Ry (k) sin Bm (k)+ξ(k)=0� (7)

Where, ξ(k) is given by,

ξ(k)=η(k)R(k)� (8)

Where, R(k) is the range between observer and target at time index k. 
The equation (5) can be written as,

H(k)Xs(k)+ξ(k)=0� (9)

Where, H(k) is given by,
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H(k) 0 0 cos B (k)  sin B (k)m m= −  � (10)

Let us assume, we are interested in finding out the TMPs through the 
initial state vector, then equation (9) can be modified as,

H(k)φ(k,0)Xs(0)+ξ(k)=0� (11)

Where, ϕ(k,0)
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Considering k measurements, using equation (11), we can write that
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For the purpose of finding out target course, equation (13) is rewritten 
as,
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Where, N(k) is given by,
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Equation (14) can be written as,

A’Xv+DXp(0)+N(k)=0� (15)

Where,
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Let A=−A’, then the least square of estimation of Xv is,

( ) 1T T
v pX̂ A A A D  X (0)

− =    � (20)

Let S A A A D  T
1

T= ( )











−
� (21)

Then, we can find out target course as follows,

x S  R S  R (0)t 11 x 12 y= +( )0

y S  R S  R (0)t 21 x 22 y= +( )0

Replacing Rx(0) with Tan(B0)Ry(0) in the above equations, (where B0 is 
the initial bearing measurement), we obtain,

x S  Tan(B ) R (0) S  R (0)t 11 0 y 12 y= + � (22)

y S  Tan(B ) R (0) S  R (0)t 21 0 y 22 y= +
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The target course, tcr, can be calculated as,
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Let us find out S matrix. For this, (ATA) and (ATD) are to be calculated.
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If variance of the noise in the bearing is also considered, then,
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Now consider ATD,
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Considering the variance of noise in the measurements,
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So far, the processing is in batch, in which the calculation time increases 
with number of samples. Let us find out target course in sequential 
processing [9].

Sequential processing
After the arrival of the first bearing measurement,

Let,
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The sums are updated after the second measurement as follows,
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All the elements of equations (28) and (30) can be written as follows,
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Where, k is the number of the measurement if the measurements 
are available continuously with sampling interval t seconds. If the 
measurements are not continuous, then kt represents the time elapsed 
so far from the beginning of the taking the measurements.
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So, ATA, equation (28) can be written as,
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Similarly, ATD, equation (31) can be written as,
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In this way, the target course can be found out easily after 
2nd measurement onward.

TMPs when initial range is known
Sometimes, range between the target and observer is available through 
some means. Then, the other parameters namely the target course 
and speed can be calculated as follows. Here onward, we can relax the 
constraint that ownship is not moving. Let the ownship be in its usual 
condition that it is moving. We can write that
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Where,
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Similarly, we can write equations for Xs(2), Xs(3), and so on. The 
equation (14) becomes,
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Equation (36) can be written as,
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The equation (37) can be written as (like equation [15])

A’Xv+DXp(0)−C+N(k)=0� (38)
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The least square solution of equation (38) can be written as,
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ATA is already available, as in equation (28). Now, let us calculate 
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This is further simplified as,
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Where, term(i) cosB (i). x (i) x (0) sinB (i). y (i) y (0)m 0 0 m 0 0= −( ) − −( )  �

� (44)

For simplification of the process, equation (40) is modified as shown 
below.
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Sequential processing
As we have done earlier, let us convert equation (45) for sequential 
processing. Let,
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Let us assume that we know initial range that is,

Ry(0)=initial range * cos Bm(0)

Using the above, we can write that
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The target course (tcr), can be calculated as,

tcr Tan
Q (1,1)

Q (2,1)

1=






− � (49)

The target speed, vt, can be calculated as,

vt= Q Q Ry( , ) ( , ) * ( )1 1 2 1 02 2+ � (50)

TMPs when target course/speed is known
Sometimes, the target course or speed is available through some 
means. Then, the other parameters can be calculated as follows, using 
equation (49) or (50). Let the target course is known. For several of 
values assumed initial range, find out the target courses. Let these are 
called calculated target courses. That range for which calculated target 
course is equal to the actual target course is the estimated target range. 
Once the range is known, we can calculate easily target speed. Similar 
procedure holds good when the target speed is known (This trial and 
error method is better than finding out transcendental explicit equation 
using Equation (45) for range estimation. These days very high-speed 
processors are available, and hence, the above suggested trail and 
method generates the solution fast).

SIMULATION AND RESULTS

The purpose of this paper is to find out the TMPs by some means, but 
without asking for ownship to maneuver, which is a very troublesome 
affair many times to the operator of the vehicle. There may be several 
methods to achieve this goal. Here, I am suggesting one method that is 
to obtain the target course, by restricting the underwater vehicle to be 

in standstill position for some time. Once target course is found out, the 
ownship can move. Then, using the target course, the other parameters 
such as target speed and range can be found out. Provision is given in the 
algorithm, to find out TMPs, if range/speed of the target is known (Then, 
the ownship need not be in standstill condition and to obtain the target 
course. The vehicle can be moving from the beginning of the processes).

The algorithm is realized using Matlab, which is realizable on any 
personal computer. All one-second samples are corrupted by additive 
zero mean Gaussian noise with max 0.5°. It is also assumed that the 
bearing measurements are available continuously every second. The 
simulation is carried out by considering the target at an initial range of 
5000 m with 40° initial bearing relative to the observer. The target is 
assumed to be moving at a speed of 30 knots (15.45 m/s). The ownship 
is assumed to be moving at a speed of 20 knots (10.3  m/s) (at zero 
speed while estimating the target course) and at 90°course. (All angels 
are considered with respect to Y axis). Number of scenarios is tested 
by changing the course of the target in steps of 1° in such a way that 
the angle between the target course and line of sight is always <55°, as 
only closing targets are of interest to the observer. In general, the error 
allowed in the estimated TMPs in underwater are 8% in range estimate, 
0.2° in bearing estimate, 5° in course estimate, and 3 m/s in velocity. For 
the purpose of analysis, this scenario with target course equal to 165° is 
considered. The results of this scenario after several Monte Carlo runs 
are shown in Fig. 1. From the results, it is observed that course estimate 
with required accuracy is obtained from around 100 seconds onward. 
For the same scenario, the target course is fed from 100 seconds onward 
to estimate the range and speed. The results are shown in Fig. 1b and c.

SUMMARY AND CONCLUSION

The method introduced by Chan and Rea [5] is implemented in 
sequential processing. Here, recursive SUMS are introduced and 
updated whenever a new bearing measurement is available. The 
constraint here is while estimating the target course; the ownship has 
to be standstill condition. From these results, it is concluded that this 
algorithm can be utilized for passive target tracking applications.
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