INVESTIGATION OF NON-LINEAR MARITIME SIGNAL ESTIMATION SCHEME FOR PASSIVE ACOUSTIC AND ELECTROMAGNETIC UNDERWATER TRACKING AND UNDERWATER SURVEILLANCE

JAWHAR A*, RAJYA LAKSHMI C

Department of Electrical and Electronics Engineering, Sanketika Institute of Technology and Management, Visakhapatnam, Andhra Pradesh, India. Email: jawaharee@yahoo.com

Received: 26 October 2016, Revised and Accepted: 01 November 2016

ABSTRACT

Objectives: Modified gain extended Kalman filter (MGEKF) created by Song and Speyer was turned out to be an appropriate calculation for points just detached target following applications in air.

Methods: As of late, roughly altered increases are displayed, which are numerically steady and exact. In this paper, this enhanced MGEKF calculation is investigated for submerged applications with a few changes.

Results: In submerged, the commotion in the estimations is high, turning rate of the stages is low, and speed of the stages is likewise low when contrasted and the rockets in air. These attributes of the stage are concentrated on in detail, and the calculation is adjusted appropriately to track applications in submerged.

Conclusions: Monte-Carlo analysis results for two run of the mill situations are introduced with the goal of clarification. From the outcomes, it is watched that this calculation is, especially reasonable for this nonlinear edges just detached target following.

Keywords: Estimation, Sonar, Kalman filter, Simulation, Modified gain, Angles-only target tracking.

INTRODUCTION

In the sea environment, three-dimensional (3D) edges just target movement examinations is by and large utilized. A spectator screens upvarious sonar orientation and heights from a transmitting target, which is thought to go in a consistent course with uniform speed. The estimations are removed from a solitary eyewitness and the spectator forms these estimations to discover target movement parameters such as go, course, bearing, rise, and speed of the objective. Here, the estimations are nonlinear; making the entire procedure nonlinear. Nonetheless, the changed increase broadened kalman channel (modified gain extended Kalman filter [MGEKF]) created by Song and Speyer [1-6], is the fruitful commitments in this field. MGEKF performs superior to anything EKF and also pseudo estimation channel. However, the adjusted pickup capacities was determined in light of the pseudo estimations. As of late, the adjusted pick up capacities are enhanced and exhibited by Longbin et al. [2-15], in which recipe of the bearing estimation is the same as in [1] and that of height estimation is more exact than the first.

So far, the angles in azimuth alone are considered. Now elevation angles are also considered. A point P, as shown in Fig. 1 whose elements are \(x, y, z \).

A line from P is drawn onto xy plane. This line is parallel to Z axis. Let this line touch xy plane at P'(x,y). Let the angle of elevation, \(\phi \), be defined as the angle between +ve Z axis (or z up) and the line OP. Let the azimuth angle be the angle between True North and the line OP. In Fig. 2a OPP' is denoted as \(\phi \) We can write the following equations.

\[
\begin{align*}
 r_x &= r \cos \phi \\
 r_y &= r \sin \phi
\end{align*}
\]

(1)

Where, \(r \) is the distance from point 0 to P (in 3D space), \(r_x \) is the distance from point 0 to P' (in two-dimensional space).

Also \(\frac{r_x}{r_y} = \cos B \) and \(\frac{r_x}{r_z} = \sin B \)

\[
\begin{align*}
 r &= r_x \cos B \\
 r &= r_y \sin B
\end{align*}
\]

(2)

Substituting Equations (1) in (2),

\[
\begin{align*}
 r_x &= r \sin \phi \sin B \\
 r_y &= r \sin \phi \cos B
\end{align*}
\]

(3)

and \(r_z = r \cos \phi \)

Where, \(r = \sqrt{r_x^2 + r_y^2 + r_z^2} = \sqrt{r_x^2 + r_y^2} \)

(4)

and \(\frac{r_x}{r_y} = \sin B \cos B \)

\[
\begin{align*}
 \tan B &= \tan^{-1} \frac{r_x}{r_y} \\
 \tan \phi &= \frac{r_y}{r_z} \frac{r_x}{r_z} = \frac{r_y}{r_z} \quad \text{(From (1))}
\end{align*}
\]

(5)

(6)

\[
\begin{align*}
 \phi &= \tan^{-1} \frac{r_y}{r_z}
\end{align*}
\]

Let the measurement be \(Z = \begin{bmatrix} Bm \\ \phi_m \end{bmatrix} = \begin{bmatrix} \frac{r_x}{r_z} + \sigma_s \\ \frac{r_y}{r_z} + \sigma_y \end{bmatrix} \)

(7)

Considering the state vector as \(X = \begin{bmatrix} x \ y \ z \ r_x \ r_y \ r_z \end{bmatrix} \t \)
Then

\[H = \left[\frac{\partial h(B)}{\partial X_i} \right] \]

\[\frac{\partial h(B)}{\partial x} = \frac{1}{1 + \frac{r_{x}^2}{r_{y}^2}} \left(\frac{1}{r_{xy}} \right) = r_{y} \]

\[\frac{\partial h(B)}{\partial y} = \frac{1}{1 + \frac{r_{x}^2}{r_{y}^2}} \left(\frac{1}{r_{xy}} \right) = r_{x} \]

\[\frac{\partial h(B)}{\partial z} = \frac{1}{1 + \frac{r_{x}^2}{r_{y}^2}} \left(\frac{1}{r_{xy}} \right) = \cos \hat{B} \]

\[\frac{\partial h(B)}{\partial r_x} = \frac{r_x^2}{r^2} \left(\frac{1}{r_{xy}} \right) = \frac{r_x}{r_{xy}} = r_{xy} \]

\[\frac{\partial h(B)}{\partial r_y} = \frac{r_y}{r_{xy}} \]

\[\frac{\partial h(B)}{\partial r_z} = \frac{1}{r^2} \]

\[\frac{\partial h(B)}{\partial \phi} = 0 \]

\[\frac{\partial h(B)}{\partial \psi} = 0 \]

Horizontal plane and bearing measurements

If the range in horizontal plane is \(r^2 = r_x^2 + r_y^2 \), then the estimated range be:

\[r_{xy} = \sqrt{r_x^2 + r_y^2} \]
As \(r_x = r_y \sin B \)
\[\hat{r}_x = \hat{r}_y \sin \hat{B} \] \(r_y = r_x \cos B \)
\[\hat{r}_y = \hat{r}_x \cos \hat{B} \] (12)

\(r_x \sin B + r_y \cos B = r_{xy} \sin \hat{B} + r_{xy} \cos \hat{B} \)
\[\hat{r}_x \sin \hat{B} + \hat{r}_y \cos \hat{B} = \hat{r}_{xy} \] (13)

By adding \(\hat{r}_x + \hat{r}_y \).
\[r_x + \hat{r}_x = r_x \sin B + r_y \cos B + r_x \sin \hat{B} + \hat{r}_x \cos \hat{B} \]
\[\sin B \sin \hat{B} + \cos B \cos \hat{B} = \sin \hat{B} + \cos \hat{B} \]

Adding both sides \(-r_x \sin \hat{B} - \hat{r}_x \cos \hat{B} + r_y \cos B + \hat{r}_y \sin B \) to the above equation.
\[r_x + \hat{r}_x = r_x \sin B + r_y \cos B + r_x \sin \hat{B} + \hat{r}_x \cos \hat{B} \]
\[\sin B \sin \hat{B} + \cos B \cos \hat{B} = \sin \hat{B} + \cos \hat{B} \]

Substituting for \(r_x \), \(\hat{r}_x \) and \(r_y \), \(\hat{r}_y \) on LHS of (14)
\[r_x + \hat{r}_x = (r_x - \hat{r}_x) \sin B + (r_y - \hat{r}_y) \cos B = \sin B \sin \hat{B} + \cos B \cos \hat{B} \]

Adding both sides \(-r_x \sin B - \hat{r}_x \cos B - \hat{r}_x \cos \hat{B} + r_y \cos B + \hat{r}_y \sin B \) to the above equation.
\[r_y + \hat{r}_y = (r_y - \hat{r}_y) \cos B + \sin B \cos \hat{B} + r_y \sin B - \hat{r}_y \sin \hat{B} \cos B = \cos B \sin \hat{B} + \sin \hat{B} \cos B \]

By subtracting \(r_y \) from \(\hat{r}_y \).
\[r_y - \hat{r}_y = r_y \sin B - \hat{r}_y \cos B = \sin B \sin \hat{B} + \cos B \cos \hat{B} \]

Adding both sides \(-r_y \sin B - \hat{r}_y \cos B - \hat{r}_y \cos \hat{B} + r_x \cos B + \hat{r}_x \sin B \) to the above equation.
\[r_x - \hat{r}_x = (r_x - \hat{r}_x) \cos B - \sin B \sin \hat{B} = \cos B \sin \hat{B} + \sin \hat{B} \cos B \]

Using (15) and (17),
\[2\hat{r}_{xy} = (r_x - \hat{r}_x) \begin{bmatrix} \sin B \sin \hat{B} \\ \cos B \cos \hat{B} \end{bmatrix} \]
\[+ (r_y - \hat{r}_y) \begin{bmatrix} \sin B \cos \hat{B} \\ \cos B \sin \hat{B} \end{bmatrix} \]

(18) can be simplified as:
\[\sin B \sin \hat{B} + \cos B \cos \hat{B} = 1 + \cos \hat{B} (\sin B + \sin \hat{B}) + (\cos B - \hat{B})(\cos B + \cos \hat{B}) \]
\[= \frac{2 \sin B \cos (B - \hat{B}) - 2 \sin \hat{B}}{\sin^2 (B - \hat{B})} \]
\[= \frac{2 \cos \sin (B - \hat{B}) - 2 \sin \hat{B}}{\sin (B - \hat{B})} \]
\[+ \frac{2 \cos \sin (B - \hat{B}) - 2 \sin \hat{B}}{\sin (B - \hat{B})} \]

III\(^{\text{iv}}\) \((r_x - \hat{r}_{xy})\) coefficient is simplified to
\[\frac{2 \cos (B - \hat{B}) \cos B - 2 \cos \hat{B}}{\sin^2 (B - \hat{B})} \]
\[= \frac{2 \sin B}{\sin (B - \hat{B})} \]

\[\therefore 2\hat{r}_{xy} = \frac{2 \cos B (r_x - \hat{r}_x)}{\sin (B - \hat{B})} + \frac{2 \sin B (r_y - \hat{r}_y)}{\sin (B - \hat{B})} \]

(21) is rewritten as,
\[\sin (B - \hat{B}) = \frac{2 \cos B (r_x - \hat{r}_x) - \sin (r_y - \hat{r}_y)}{\hat{r}_{xy}} \]

Angle measurement
\[\tan^{-1} \frac{r_y}{r_x} = B \] generates
\[\sin(B - \hat{B}) = \frac{\cos B (r_x - \hat{r}_x) - \sin (r_y - \hat{r}_y)}{\hat{r}_{xy}} \]

\[\tan^{-1} \frac{r_y}{r_x} = \phi \] generates
\[\cos(B - \hat{B}) = \frac{\cos (\phi - \hat{\phi}) = \sin (r_y - \hat{r}_y)}{\hat{r}_{xy}} \]

Where, \(r_x \rightarrow r_y, r_y \rightarrow r_x, B \rightarrow \phi \)
\[r_x \rightarrow r_y \] is given by (17) as follows,
\[r_y - \hat{r}_y = \frac{(r_x - \hat{r}_x) \sin B + (r_y - \hat{r}_y) \cos B}{1 + \cos (B - \hat{B})} \]

It is known that \(\cos (p+q) + \cos (p-q) = 2 \cos p \cos q \),
\[\sin(p+q) + \sin(p-q) = 2 \sin p \sin q \]

III\(^{\text{v}}\)
\[1 + 2 \cos 2\alpha = 2 \cos \alpha \]
\[\therefore 1 + \cos (B - \hat{B}) = 2 \cos \frac{B - \hat{B}}{2} \]

Using (24), (25) and (26), equation (17) becomes,
\[(r_x - \hat{r}_x) \sin \frac{B+\hat{B}}{2} (B - \hat{B}) + (r_y - \hat{r}_y) \cos \frac{B+\hat{B}}{2} \]
\[\cdot \sin \frac{B - \hat{B}}{2} \]
\[= \frac{2 \cos \frac{B+\hat{B}}{2} \cos \frac{B - \hat{B}}{2} \cos \frac{B - \hat{B}}{2}}{\sin \frac{B - \hat{B}}{2}} \]

Substituting (27) in (23),
\[\sin (\phi - \hat{\phi}) = \frac{\cos \phi}{r} \sqrt{2 \sin (B - \hat{B})} \]
As φ − φ tends to zero and \(\sin(\phi - \phi) \rightarrow (\phi - \phi) \) and \(\sin(\beta - \beta) \rightarrow (\beta - \beta) \).

Equations (22) and (28) can be written in matrix form as:

\[
\begin{bmatrix}
(B-B) \\
(\phi-\phi)
\end{bmatrix}
=
\begin{bmatrix}
\cos B_r
\sin B_r
\cos B \cos B_r
\sin B \cos B_r
\end{bmatrix}
\begin{bmatrix}
0
\sin \phi
0
\sin \phi
\end{bmatrix}
\begin{bmatrix}
B_r \\
\phi
\end{bmatrix}
\]

True bearing is not available, if it is replaced by measured bearing,

\[
\begin{bmatrix}
(B-B) \\
(\phi-\phi)
\end{bmatrix}
=
\begin{bmatrix}
\cos B_r \\
\sin B_r \\
\cos B \cos B_r \\
\sin B \cos B_r \\
\end{bmatrix}
\begin{bmatrix}
\sin \phi \\
0 \\
\sin \phi \\
0 \\
\end{bmatrix}
\begin{bmatrix}
B_r \\
\phi
\end{bmatrix}
\]

Where, \(g \) is given by,

\[
g =
\begin{bmatrix}
\cos B_{\mu} \\
\sin B_{\mu} \\
\cos B_{\mu} \cos \phi \\
\sin B_{\mu} \cos \phi \\
\end{bmatrix}
\begin{bmatrix}
B_r \\
\phi
\end{bmatrix}
\]

Considering \(\hat{x}, \hat{y} \) and \(\hat{z} \) also \(g \) is given by,

\[
g =
\begin{bmatrix}
\cos B_{\mu} \\
\sin B_{\mu} \\
\cos B_{\mu} \cos \phi \\
\sin B_{\mu} \cos \phi \\
\end{bmatrix}
\begin{bmatrix}
\hat{r} \\
\hat{\phi} \\
\hat{r} \\
\hat{\phi}
\end{bmatrix}
\]

Implementation of Kalman filter

It is assumed that the target is not changing depth.

Let \(X = [\hat{x} \quad \hat{y} \quad \hat{r}_x \quad \hat{r}_y \quad \hat{r}_z]^T \)

Let \(X(0|0) \) be \(X(0|0) \)

\[
X(0|0) = \begin{bmatrix} 10 & 10 & 15000 \sin B_m \sin \phi_m \\ 15000 \cos B_m \sin \phi_m & 15000 \cos \phi_m \end{bmatrix}
\]

\[
P(0|0) = 1
\]

\[
G(k+1) = P(k+1|k)H(k+1)P(k+1|k)H(k+1)+r(k+1)
\]

Where, \(r(k+1) = \begin{bmatrix} \sigma \phi^2(k+1) & 0 \\ 0 & \sigma \phi^2(k+1) \end{bmatrix} \)

Where, \(\sigma^2 \) and \(\sigma^2 \phi \) are input error bearing and elevation measurement covariances respectively.

\[
\hat{X}(k+1|k+1) = \hat{X}(k+1|k) + k(k+1)[Z(k+1) - \hat{h}(\hat{x}(k+1|k))]
\]

\[
P(k+1|k+1) = (I-Gg)P(I-Gg)
\]

For next cycle \(\hat{x}(k|k) = \hat{x}(k+1|k+1) \)

\[
P(k|k) = P(k+1|k+1)
\]

A maneuvering target and tracking using bearing and elevation measurements

\[
\hat{x}(k+1|k) = \hat{x}(k+1|k) + B
\]

Where, \(\hat{X}(k+1|k) = \hat{X}(k+1|k) \hat{X}(k+1|k) + Q(k+1) \)

Where, \(Q \) is plant covariance matrix.
IMPLEMENTATION OF THE ALGORITHM FOR UNDERWATER APPLICATION

The above mentioned improved MGEKF algorithm is implemented for underwater passive target tracking as follows. In underwater, the variance of the noise in the measurements is very high, and so the measurements are preprocessed (averaging the measurements over some duration, say 20 seconds) to reduce the variance of the noise in the measurements. Hence, although the measurements are available every one second, the update of the solution is presented at every 20 seconds. This does not hamper the results as the vehicles move in water at very low speeds when compared with that of in air. The underlying target state vector is picked as takes after. As just bearing and height estimations are accessible, and there is no real way to figure the speed parts of the objective, these segments are each thought to be 10 m/s which is near the sensible speed of the vehicles in submerged. The scope of the day, say 15,000 m, is used in the computation of beginning position gauge of the objective as:

\[
X(0|0) = \begin{bmatrix} x \\ y \\ z \\ x \\ y \\ z \end{bmatrix}^T = \\
\begin{bmatrix}
10 & 10 & 10 & 15000 & * & \sin B_0(0) & * & \sin \phi(0) \\
15000 & * & \sin \phi(0) & * & \cos B_0(0) & 15000 & * & \cos \phi(0)
\end{bmatrix}
\]

Where, \(B_0(0)\) and \(\phi(0)\) are initial bearing and elevation measurements. The initial covariance matrix is chosen according the standard procedure [3].

SIMULATION RESULTS

PC calculation is produced and tried with recreated information to outline the execution of this estimator. Every single crude bearing and height estimations are adulterated by added substance zero mean Gaussian commotion with a r.m.s level of 1° in speed appraise. It is watched this was required exactness is acquired from 240 seconds onwards thus this calculation is by all accounts particularly valuable for submerged aloof target following.

REFERENCES

3. Longbin M, Qi L, Yiyu Z, Zhongkang S. Improvement of song and Speyer’s modified gain functions in angles only tracking. IEEE Trans Aerosp Electron Syst (to be Published).