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ABSTRACT

Objective: The feasibility of a novel transformation, known as unscented transformation, which is designed to propagate information in the form of 
mean vector and covariance matrix through a nonlinear process, is explored for underwater applications.

Methods: The unscented transformation coupled with certain parts of the classic Kalman filter, provides a more accurate method than the EKF 
for nonlinear state estimation. Using bearings only measurements, Unscented Kalman filter algorithm estimates target motion parameters and 
detects target maneuver, using zero mean Chi-square distributed random sequence residuals, in sliding window format. During the period of target 
maneuvering, the covariance of the process noise is sufficiently increased in such away that, the disturbances in the solution is less.

Results: When target maneuver is completed, the covariance of process noise is lowered. In seawater, targets move at different speeds and will be at 
different ranges. It is observed that this algorithm is able to track all types of targets with encouraging convergence time.

Conclusion: The performance of this algorithm is evaluated in Monte Carlo simulation and results are shown for various typical geometries.
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INTRODUCTION

In the ocean environment, two-dimensional bearings only target motion 
analysis (TMA) is generally used. An observer monitors noisy sonar 
bearings from a radiating target in passive listening mode and processes 
these measurements to find out target motion parameters, viz., range, 
course, bearing, and speed of the target. As range measurement is not 
available and the bearing measurement is not linearly related to the 
target states, the whole process becomes nonlinear [1-3]. Added to this, 
since bearing measurements are extracted from single passive sonar, 
the process remains unobservable until observer executes a proper 
maneuver. For presenting the concepts in clear, it is assumed here 
that the target is moving at constant velocity. The traditional Kalman 
filter is optimal when the model is linear. Unfortunately, many of the 
state estimation problems such as the above-mentioned tracking of the 
target using bearings only information, is nonlinear, thereby limiting 
the practical usefulness of the Kalman filter and Extended Kalman 
filter [4,5]. Hence, the feasibility of a novel transformation, known as 
unscented transformation, which is designed to propagate information 
in the form of mean vector and covariance matrix through a nonlinear 
process, is explored for underwater applications. The unscented 
transformation coupled with certain parts of the classic Kalman filter 
provides a more accurate method than the EKF for nonlinear state 
estimation. It is more accurate, easier to implement and uses the same 
order of calculations. So far in the literature, the target is assumed 
to be moving with a constant velocity. When the target carries out a 
maneuver, the solution diverges. Then, the usual practice for underwater 
applications is to restart the whole process, on the detection of target 
maneuver by the innovation algorithm. In this paper, Unscented Kalman 
filter (UKF) [4,5] algorithm is tried out to track the maneuvering target, 
using bearings only measurements, which are available from passive 
sonar.

The target observer geometry is given in Fig. 1. The detection of target 
maneuver is carried out as follows. In this process, it is assumed that 
the estimator UKF is of high quality in the sense that solution is possible 
for all tactical scenarios including all quadrants (several geometries 

are tested using UKF, and the solution is invariably obtained). It is also 
assumed that the solution diverges only when the target maneuvers.

When the target is not maneuvering, it is observed from many geometries 
that the bearing residuals of UKF are almost zero and their small scatter 
around the zero bearing line is the random noise. It is also noted that the 
bearing residuals are not close to zero when the target is maneuvering. It 
is very difficult to confirm whether the target has maneuvered or not just 
by visual inspection of the bearing residual plot, due to the corruption 
of the bearing measurements with random noise. Hence, zero mean 
Chi-square distributed random sequence residuals, in sliding window 
format, are used for the detection of target maneuver. Target maneuver is 
declared when the normalized squared innovations exceed the threshold. 
Sufficient plant noise is inputted to the covariance matrix during the 
period of target maneuver so that the disturbances in the solution is 
less. When the maneuver is completed, i.e.,  the normalized squared 
innovations is less than the threshold, the process noise level is lowered.

The paper is organaized as follows. Section 2 describes mathematical 
modeling of the measurements, observer, and target motions. It also 
describes the formulation of UKF for bearings only target motion analysis, 
deals with target maneuver detection algorithm using normalized 
squared innovation process and also with the adjustment of covariance 
matrix during target maneuver. In section 3, implementation aspects such 
as initialization of state vector and simulation are discussed. The results 
in Monte Carlo simulation for various scenarios using UKF are presented. 
Limitations of the algorithm are discussed in section 4. Finally, the paper 
is concluded in section 5. It is well-known that particle filter (PF) takes 
more time than that of UKF and UKF itself is able to generate the required 
accuracies in the estimated solution, PF is not discussed in this paper.

MATHEMATICAL MODEING

State and measurement equations
Let the target state vector be Xs (k) where,

Xs (k) = [x (k)  y (k)  R (k) R (k) ]x y
T

  � (1)
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Where,  x (k) and y (k)  are target velocity components, and Rx (k) and 
Ry (k) are range components, respectively.

The target state dynamic equation is given by,

Xs(k+1) =   Xs (k)+b (k+1)+ Γ  ω (k)� (2)

Where, ϕ and b are transition matrix and deterministic vector, 
respectively.

The transition matrix is given by,



 
 
 =  
 
 

1 0 0 0
0 1 0 0
t 0 1 0
0 t 0 1

Where t is sample time,

b (k+1)= 0 0 1 1− + − − + − { ( ) ( )} { ( ) ( )}x k x k y k y k0 0 0 0

and   = 

 
 
 
 
 
 
 
 
  

2

2

t 0
0 t

t 0
2

t0
2

� (3)

Where, xo and yo are observer position components. The plant noise, 
 (k) is assumed to be zero mean white Gaussian with E [ɷ(k) 
ɷ(j)] = Qδkj. True North convention is followed for all angles to reduce 
mathematical complexity and for easy implementation. The bearing 
measurement,  Bm is modeled as,

( ) ( )
( ) ( )−  +

+ = + 
+ 

x1
m

y

R k 1
B k 1 tan k

R k 1
� (4)

Where, ς(k) is error in the measurement and this error is assumed to 
be zero mean Gaussian with variance σ2. The measurement and plant 
noises are assumed to be uncorrelated to each other. Equation (4) is a 
nonlinear equation.

The plant noise ɷ(k) is assumed to be zero mean white Gaussian. It is 
given by:

( )
ω 

ω =  ω  





xk
y

� (5)

The plant noise covariance matrix is given by:

( )

 
 
 
 
 
 

=  
 
 
 
 
 
 

3ts2ts 0 0
2

3ts20 ts 0
2Q(k) *d k

3 4ts ts0 0
2 4

3 4ts ts0 0
2 4

� (6)

Where, d(k) is given by:

d(k) ( ) ( ) = ω ω  
TE k  k

Unscented Kalman filter (UKF) algorithm
The state equation is given by:

X(k+1)=F(X(k), ϕ(k))+W(k)� (7)

where wk is the plant noise. The unscented Kalman filter (UKF) uses 
(2n+1) scalar weights (mean and covariance), which can be calculated 
as:

λ
=

λ
(m)
0W

n+

λ
β

λ
(c)
0W = +

n+

λ
(m) (c)
i i

1W =W =
2(n+ ) 	 i = 1,2,…2n� (8)

Where, λ = (σ2−1)* is a scaling parameter, α determines the spread 
of the sigma points around the mean x– and is usually set to a small 
positive value and β is used to incorporate prior knowledge of the state 
distribution x (for Gaussian distribution, β=2 is optimal). The standard 
UKF implementation consists of the following steps:
1.	 Calculation of the (2n+1) sigma points starting from the initial 

conditions x(k) = x(0) and P(k) = Po

	 X(k) x(k) x(k) (n )P(k) x (n )P(k)k= + + − +



λ λ � (9)

2.	 Transformation of these sigma points through the process model 
using equation (12).

3.	 The prediction of the state estimate at time k with measurement up 
to time k+1 is given as:

	 x(k 1|k) W .x(i,k 1|k)i
(m)

i 0

2n

+ +=
=
∑ � (10)

	 As the process noise is additive and independent, the predicted 
covariance is given as:

	
=

+ = + − +  

+ − + +  

∑
2n

(c)
i

i 0
T

P(k 1|k) W x(i,k 1|k) x(k 1|k) .

x(i,k 1|k) x(k 1|k) Q(k)

� (11)

4.	 Updation of the sigma points with the predicted mean and covariance. 
The updated sigma points are given as:

	
X(k 1|k) x(k 1|k) x(k 1|k) (n )P(k 1|k)

x(k 1|k) (n )P(k

+ = + + + + +


+ − +

λ

λ ++ 
1|k)

� (12)

5.	 Transformation of each of the predicted points through measurement 
equation

6.	 Prediction of measurement (innovation), given as:

	 y(k 1|k) W .Y(k 1|k)i
(m)

i 0

2n

+ = +
=
∑ � (13)

Fig. 1: Target and observer encounter
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7.	 Since the measurement noise is also additive and independent, the 
innovation covariance is given as:

	 =

= + − +  

+ − + +  

∑
2n

(c)
yy i

i 0
T

P W Y(i, k 1)|k) y(k 1|k) .

Y(i,k 1|k) y(k 1|k) R(k)

� (14)

8.	 The cross covariance is given as:

	 =

= + − +  

+ − +  

∑
2n

(c)
xy i

i 0
T

P W X(i,k 1|k) x (k 1|k)

. Y(i,k 1|k) y(k 1|k)

� (15)

9.	 Kalman gain is calculated as:

	 K(k 1) P .Pxy yy
1+ = − � (16)

10.	 The estimated state is given as:

	 X(k 1|k 1) X(k 1|k) K(k 1)(y(k 1|k 1) y(k 1|k)+ + = + + + + + +− �(17)

	 Where, y(k) is true measurement.
11.	 Estimated error covariance is given as:

	 P(k 1|k 1) P(k 1|k) K(k 1).P .K(k 1)yy
T+ + = + + +− � (18)

Target maneuver detection
In under water, the target moves, in general, at constant speed and 
occasionally maneuvers by changing its course so that it reaches its 
destination, at a reasonable time, without being caught by the observer. 
If the target moves at constant velocity, it is easily caught by the observer.

The observer, in passive mode, has only target bearing information. 
Hence, it makes maneuvers so that it can obtain the target motion 
parameters. In general, observer’s one maneuver is sufficient to make 
the process observable. As the noise is present, maximum number of 
observer’s maneuvers are required to obtain the acceptable solution. 
The maneuver command can be modeled as a random process or a 
deterministic process. The random process is further classified as white 
noise or autocorrelated noise, according to the statistical characteristics 
of the process modeling of the maneuver. In long range sonar applications, 
we can ignore the details of a maneuver and concentrate on detecting its 
occurrence. Here, the target maneuver is modeled as a random process 
and accordingly the post-maneuvering estimate is corrected. In the 
modeling of the dynamics of nonmaneuvering targets, the process noise 
is assumed to be low. A maneuver manifests itself into a large innovation.

A fudge factor is used to scale up the process noise such that the 
modified prediction covariance is sufficiently large when the maneuver 
has taken place. The process noise level is lowered after the completion 
of the target maneuver. The normalized innovations squared is given 
by [6].

γϕ(k+1)=ϕT(k+1)S−1(k+1)ϕ(k+1)� (19)

Where, ϕ(k+1) is innovation or measurement residual and is given by,

ϕ(k+1)=Bm(k+1)−h(k+1, X(k+1|k))� (20) 

Let s(k) be covariance matrix of ϕ(k). s(k) is given by,

S(k+1)=H(k+1)P(k+1|k)HT(k+1)+σ2� (21)

The values of s(k) for k = 1,2,… will be taken as the diagonal elements in 
the matrix S. For example, if window size 5,

S = [s(1) 0 0 0 0; 0 s(2) 0 0 0; 0 0 s(3) 0 0; 0 0 0 s(4) 0; 0 0 0 0 s(5)];

A maneuver is declared only if d( ) , as defined in Equation (14) is 
statistically significant. That is

d( ) S  cT -1ξ γ γ= . ≥  [6]� (22)

Where, T= (1) (2) . (k)      � (23)

Where c is threshold. The statistic d is a Chi-square distributed with 
n degrees of freedom (where n is equal to dimension of the sliding 
window). The size of the sliding window, in maneuver detection, is 
selected on the basis of the results of several geometries. In general, 
the window size of at least five samples is taken so that the reliability 
is increased in highly noisy environment prevalent in underwater 
scenario. The higher the window size, the higher is the value of d( ) . 
This window size is chosen as six, based on the results of Monte Carlo 
simulation against a number of geometries. The details of the simulation 
are as follows.

IMPLEMENTATION AND SIMULATION

All raw bearings and frequency measurements are corrupted by 
additive zero mean Gaussian noise. The performance of this algorithm 
is evaluated against number of geometries. For the purpose of 
presentation, the results of the scenario considered as shown in Table 1 
(Scenario 1 is for ship and the Scenario 2 is for submarine).

The measurement interval is 1  second and the period of simulation 
is 1800 seconds. Here, all angles are considered with respect to True 
North 0-360°, clockwise positive.

All 1 second samples are corrupted by additive zero mean Gaussian 
noise with a r.m.s level of 0.33°. The observer is assumed to be doing 
‘S’ maneuver on the line of sight at a given constant speed and at a 
turning rate of 3°/second. The observer moves initially at 90° course 
for 2 minutes, and then, it changes its course to 270°. At 9th, 16th, and 
23rd minutes, the observer changes its course from 270 to 90, 90 to 
270, and 270 to 90° degrees, respectively. It is also assumed that 
the bearing measurements are available continuously every second. 
A  number of scenarios are tested by changing the course of the 
target in steps of 3° in such a way that the angle between the target 
course and line of sight is always <60°, as only closing targets are 
of interest to the observer. The results of these scenarios in Monte 
Carlo simulation are noted and it is found that the observability in 
the target motion parameters has taken place after the completion 
of the observer’s first maneuver. In general, the error allowed in the 
estimated target motion parameters in underwater are ten percent in 
range, 3° in course and 4 m/second in velocity estimates. Around 80% 
required solution is realized after observer’s second maneuver and 90 
to 95% required solution is realized after the third. From the results, it 
is observed that the solution with required accuracy is obtained from 
6th minute onward.

Table 1: Scenarios considered

Parameter Scenario 1 Scenario 2
Initial range (m) 5000  5000
Initial bearing (°) 0 0  
Target speed (m/seconds) 2 2
Target course (°) 135 135
Observer speed m/second 10 3
Observer course (°) 90 90
Error in the bearing (one sigma) (°) 0.33 0.33
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The theoretical value of Chi-square variable with 5° of freedom at 
90% confidence level is 9.24. The higher value of d(ξ) is due to the 
consideration of EKF using Taylor series expansion up to the first 
order. When there is a target maneuver it is changing from around 
200-500 in 20  seconds initially and afterward in next 4-5  seconds, it 
is changing more than 2000. In this scenario, the observer moves from 
the origin in S - maneuver on initial line of sight at 2.0 m/second with 
a turning rate of 3°/second. After the completion of four maneuvers, it 
maintains 90° course throughout the simulation period. It is assumed 
that the target is maneuvering from 135° to 235° with a turning rate 
of 3°/seccond at 660 seconds. The target has maneuvered from 135 to 
235° at 660 seconds. Target maneuver is declared when the normalized 
squared innovations exceed the threshold. Sufficient state noise is 
inputted to the covariance matrix during the period of target maneuver 
so that the filter comes back to steady state experiencing only acceptable 
disturbance during target maneuvering period. When the maneuver is 
completed, i.e., when the normalized squared innovations are less than 
the threshold, the process noise level is lowered to 1.

For the implementation of the algorithm, the initial estimate of the 
target state vector is chosen as follows. As range measurements are not 

available, it is difficult to guess the velocity components of the target. 
Hence, these components are each assumed as 5 m/second, which are 
roughly close to the general speeds of the vehicles in underwater. The 
sonar range of the day, say 5000 m, is utilized in the calculation of initial 
position components of the target state vector as follows.

The target state vector is:

 =  
T

X (0) 5 5 5000 sinB (0) 5000 cosB (0)s m m

Where Bm(0) is the initial bearing measurement. ɷx(k) and ɷy(k) are 
the disturbances in acceleration component along X and Y-axis. The 
initial covariance matrix P(0/0) is a diagonal matrix with the elements 
are given by,

P(0/0) Diagonal 4 X (i) 12s
(a) 2= ∗( ) 	 Where i= 1,2,…4

LIMITATIONS OF THE ALGORITHM

Angle on target bow (ATB) is the angle between the target course 
and line of sight. When ATB is more than 60°, the distance between 

Scenario 1: (a) Simulated and true target paths. (b) Errors in the target motion parameters

b

a
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the target and observer increases as time increases and hence 
bearing rate decreases. The algorithm cannot provide good results 
when the target is going away or the measurement noise is more 
than 1° rms.

In general, the sonar can listen to a target when SNR is sufficiently 
high. When SNR becomes less, auto tracking of the target fails, the 
sonar tracks the target in manual mode and the measurements are 
not available continuously. The bearings available in manual mode are 
highly inconsistent and are not useful for good tracking of the target. 
In underwater, it is also possible that sonar measurement sometimes 
is spurious (the difference between the present and previous 
measurement being very high) and the same is treated as invalid. In 
this algorithm, it is assumed that good track continuity is maintained 
over the simulation period. This means that propagation conditions are 
satisfactory during this period as well as track continuity is maintained 
during ownship maneuvers. The algorithm cannot provide good results 
when the measurement noise is more than 1° rms or when the target is 
going away w.r.t. the observer.

SUMMARY AND CONCLUSION

The authors have tried UKF for bearings only underwater maneuver 
target tracking in Monte Carlo simulation and observed that the results 
are satisfactory. Hence, UKF is recommended for this application.
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