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ABSTRACT

In under water an observer pre‑processes the noisy bearing measurements available from passive sonar and then the data are used by Kalman filter 
to find out target motion parameters. The pre‑processing reduces the amplitude of the noise, replaces the missed bearings with estimated bearings, 
supplies the estimated bearings if the bearing measurement is not available or incorrect and finally it finds out mean and variance of the noisy 
data. The statistical characteristics of the data are used in Kalman filter which finds out the target motion parameters. Online estimation of bearing 
measurement is carried out using Pseudo‑linear estimator. Finally, the whole algorithm is evaluated in Monte‑ Carlo simulation and the results for one 
typical scenario are presented.
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INTRODUCTION

In the sea environment, an onlooker screens uproarious sonar course 
from an emanating focus in inactive listening mode. An eyewitness 
procedures these estimations and discovers target movement 
parameters, namely, go, course, bearing, and speed of the objective. 
Nowadays, an advanced adaptation of Kalman sift is utilized to 
discover through the objective movement parameters. Kalman channel 
requires the factual qualities like mean and difference of the clamor in 
the bearing estimations  [1‑4]. This channel additionally accepts the 
clamor takes after Gaussian appropriation. When all is said in done, the 
bearing estimations in submerged are exceptionally ruined with clamor 
and Kalman channel fizzles with this commotion. Thus, pre‑handling 
of the estimations is required to make the commotion Gaussian and 
to discover the mean and covariance of the uproarious estimations 
furthermore to lessen the adequacy of the clamor. The target‑observer 
geometry is given in Fig. 1.

Added to the above, in submerged, in some cases, the auto‑following of 
the objective fizzles and the latent sonar tracks the objective in manual 
mode, and subsequently, the estimations are not accessible persistently. 
It was likewise seen in submerged that the sonar estimation once in a 
while is spurious (the contrast between the present and past estimation 
being high) and the same is dealt with as invalid. Pre‑handling of the 
measure evaluates the heading and replaces the terrible or missed 
course. This online pre‑handling consistently screens the difference of 
the commotion in the estimations, and if any estimation is with more 
fluctuation than predefined, this procedure replaces the same with the 
assessed bearing, acquired by utilizing pseudo‑linear estimator [3,4,2].

Segment 2 portrays the scientific displaying of the pre‑preparing 
of information. The estimation of bearing utilizing Pseudo Linear 
estimator is depicted in area 3. Changed Gain Bearing Extended Kalman 
Filter is depicted in area 4. Reenactment and results are exhibited in 
area 5 finally the paper is finished up at segment 6.

PRE‑PROCESSING OF THE MEASUREMENTS

In submerged, the commotion in the bearing estimations is high. The 
estimations accessible at consistently are found the middle value of 
more than 20 seconds so that the change of the commotion is lessened 
by an element of 20. The contribution to the Kalman channel is 

accessible at each 20th seconds, and the objective movement parameters 
are upgraded at 20  seconds interim. In submerged, the speed of the 
vehicle is very little thus overhauling of the arrangement by 20 seconds 
will not hamper the weapon control handle.

In the event that at least one estimation is not accessible amid 
20 seconds interim, the normal will be done by no. of tests accessible. 
On the off chance that every one of the estimations is not accessible 
amid 20  seconds interim, then 20  seconds normal estimation is 
supplanted with a course estimation assessed by utilizing bearing rate, 
which is computed with the estimations accessible till then.

The mean or inclination in the estimations is thought to be zero. On the 
off chance that it is not zero, then the objective movement parameters 
contain predisposition. At the pre‑preparing stage, there is no real way 
to discover mean of the clamor. In the event that inclination is available 
and is known by a few means, every one of the estimations is subtracted 
by this mean. The difference of the clamor is computed as takes after.

Variance of the noise in the measurement
The variance of the error in each bearing measurement is calculated 
as follows. Consider a simple linear regression model for the bearings 
given by b = a0 + a1t+ε where a0 and a1 are regression coefficients, ε is 
distributed with zero mean and unknown variance σ2, t is time variable, 
and b is bearing. Here, a0 represents the intercept on bearing axis and 
a1, the bearing rate. Let there be n measurements in sample duration of 
20 seconds. From simple regression analysis [1].
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Where dt and db are the changes in time and bearings respectively 
between two successive measurements. t– and b– represent the average 
of time and bearings respectively in the 20 seconds time sample. The 
variance of the noise is given by
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The measurement is bad or good, is determined by its variance of the 
noise. If the variance is high than the assumed one, then it is treated as 
bad or not available measurement.

ESTIMATION OF BEARING

In general, the state vector is with  (target velocity components) 
and x  (k) and y  (k)(target position) components  [5]. By rotating the 
coordinate system such that +y axis lies along the latest bearing entered, 
the state vector represents relative position and relative velocity at the 

time of the entry of the latest bearing. is [ 


B(k)  
R(k)

R(k)
  Br(k)   1 ], where 

the first and second elements represent bearing rate and range rates 
respectively, and Br represents the estimated error of the given input 
bearing. R  represents the relative range of the target with reference 
to the observer. Similar target state vector was utilized by Aidala and 
Hammel  [3]  in modified polar coordinate based Kalman filter. The 
estimated bearing at any time is given by the present bearing plus Br. 
If the bearing is missed at any time, then the present bearing is the 
previous bearing plus bearing rate multiplied by the time between the 
samples (assuming the measurements are available with fixed interval). 
For obtaining this required state vector, covariance matrix of Pseudo 
Linear Estimator is built up using Cartesian coordinate state vector and 
then converted to modified polar coordinate state vector in such a way 
that the +ve y‑axis lies along the line of sight.

MODIFIED GAIN BEARING EXTENDED KALMAN FILTER (MGBEKF)

The alternative derivation of the modified gain function  [4,2]of Song 
and Speyer’s extended Kalman filter is slightly modified as follows. Let 
the target state vector be Xs (k) where

X (k)=[X(k)y(k)R (k)R (k)]
s X y

T


 � (3)

Where x⋅(k) and y⋅ (k) are target velocity components and, Rx(k) and 
Ry(k) are range components, respectively.

The target state dynamic equation is given by

Xs(k+1) = ϕ Xs(k)+ b(k+1)+ωҐ(k)� (4)

Where ϕ and b are transient matrix and deterministic vector 
respectively.

The transient matrix is given by
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Where xo and yo Are ownship position components. The plant noise, ω(k) 
is assumed to be zero mean white Gaussian. True North convention is 
followed for all angles to reduce mathematical complexity and for easy 
implementation. The bearing measurement, Bm is modeled as
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Where ϛ(k) is error in the measurement, and this error is assumed to 
be zero mean Gaussian with variance σ2. The measurement and plant 
noises are assumed to be uncorrelated to each other. Equation (4) is a 
nonlinear equation and is linearized by using the first term of the Taylor 
series for Rx and Ry. The measurement matrix is obtained as

2 2
y X

ˆ ˆ ˆ ˆH(k+1)= 0 0 R (k+1|k)/R (k+1|k) ‑R (k+1|k)/R (k+1|k)   � (7)

Since the true values are not known, the estimated values of Rx and Ry 
are used in the above equation. The covariance prediction is

P(k+1|k) = ϕ(k+1|k)P(k|k)ϕT(k+1|k)+ҐQ(k+1)ҐT� (8)

Where Q is plant noise covariance matrix. The Kalman gain is

G(k+1) = P(k+1|k) HT(k+1)[σ2+H(k+1) P(k+1|k) HT(k+1)]−1� (9)

The state and its covariance corrections are given by

X(k+1|k+1) = X(k+1|k)+G(k+1)[Bm(k+1)‑h(k+1, X(k+1|k))]� (10)

Where h(k+1, X(k+1|k) is the bearing using predicted estimate at time 
index k+1

P(k+1|k+1) = [I‑G(k+1) g(Bm(k+1), X(k+1|k))]P(k+1|k)

[I‑G(k+1)g(Bm(k+1), X(k+1|k)))]T+σ2G(k+1) GT(k+1)� (11)

Where g(.) is modified gain function as defined in [2]. The value of g is

m X m y m

m X m y m

ˆ ˆ0 0 cosB /(R sinB +R cosB )
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Since the true bearing is not available in practice, it is replaced by the 
measured bearing to compute the function g (.).

SIMULATION AND RESULTS

For the implementation of the algorithm, the initial estimate of target 
state vector is chosen as follows. As only bearing measurements are 
available, it is not possible to guess the velocity components of the 
target. Hence, these components are each assumed as 10 m/seconds, 
which are close to the realistic speeds of the vehicles in underwater. The 
range of the day, say 15000 m, can be utilized in the calculation of initial 
position components of the target as follows

X(0|0)= 10 10 15000*sinB 15000*cosB
m m

T[ ] � (13)

It is assumed that the initial estimate, X(0|0) is uniformly distributed. 
Then the elements of initial covariance diagonal matrix can be written 
as

P 0|0
4 x 0|0
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00

2
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Fig. 1 Target motion analysis with single observation platform 
in S – maneuver
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Every one of the 1 second examples is adulterated by added substance 
zero mean Gaussian commotion with a r.m.s level of 0.5°. The eyewitness 
is thought to do “S” move (as appeared in the figure) on hold of sight 
at a consistent speed of 3  m/seconds at a turning rate of 1°/second. 
MGBEKF is actualized, and the outcomes are exhibited for a situation 
in which the objective is an underlying scope of 20000 m with the zero 
beginning bearing in respect to the spectator. The objective is thought to 
move at a speed of 10 m/seconds. With the end goal of the investigation, 
this situation at target course equivalent to 140° is appeared in Fig. 1. 
The recreation is done for a time of 30 minutes. The consequences of 
this situation after 100 Monte Carlo runs are appeared in Figure 2a‑d. 
In these figures and the consequent figures, the blunders in the range, 
course, bearing and speed evaluations are signified by R‑mistake, 

C‑blunder, B‑blunder, and S‑mistake individually. From the outcomes, 
it was watched that the arrangement with required precision is gotten 
from 6th moment onward.

CONCLUSION

The authors have attempted to pre‑process the passive sonar bearing 
measurements to reduce and find out the statistical characteristics of 
the noise in the measurements, etc., so that the data can be effectively 
used for tracking an underwater target by Kalman filter effectively. The 
simulation results confirm that the algorithm is suitable for underwater 
applications.
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Fig. 2 (a) Error in range estimates, (b) error in speed estimate, (c) error in bearing estimate, (d) error in course estimate
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