NATURAL FLAVONOIDS: A NOVEL APPROACH TO BREAST CANCER (REVIEW)

SHIKHA RANA¹, DR SAVITA DIXIT*, DR ALOK MITTAL**

1. Research scholar, maulana azad institute of technology, Bhopal.*professor, hod, department of chemistry, maulana azad institute of technology,Bhopal.** professor, department of chemistry, maulana azad institute of technology, Bhopal.

Email: Savitadixit1@yahoo.com

Received:10 March 2017, Revised and Accepted:20 May 2017

ABSTRACT

Cancer is a hereditary disease and is caused due to the abnormal growth of the cells. Cancer can be of many forms but the most prevalent is the breast cancer. Breast cancer is the most common among women and can be treated by radiation therapy, surgery, hormone therapy, chemotherapy and natural therapy. The present review presents an overview about the role of flavonoids in curing cancer. This review gives a detailed account of classification of flavonoids. The in vivo and in vitro studies show the action of flavonoids on cancer. Various natural flavonoids can be extracted and can be used for various therapeutic effects apart from cancer.

Keywords: Flavonoids, Cancer, Breast Cancer, Classification of flavonoids.

INTRODUCTION

Cancer is a hereditary disease. The agents causing cancer are known as carcinogens. These can be present in food, water and air. It is a virulent disease which leads to the genetic mutations bringing a change in regulating proteins. The resultant abnormal cell behaviour leads to extensive growth of cells affecting various surrounding cells and organs resulting into cancer and ultimately leads to the death of the patient (1).

Breast Cancer is the most prevailing disease in women. It is the second common disease after lung cancer. The disclosure, medication and avoidance of breast cancer are one of the burning issues in public health and medical practices (2).

Breast Cancer patients can be diagnosed by surgery, radiation therapy, chemotherapy, hormone therapy and natural therapy. These therapies are employed to wipe out cancer, avert the production of metastases and counter the excretion (3).

Historical Perspective

A new flavonoid called rutin was isolated from oranges in the year 1930 which reduced the capillary permeability (35). Flavonoids are found in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine (36). Flavonoids are found in various medicinal plants and finds a great use in various treatments used worldwide specially China. Flavonoids extracted from licorice have been found to show therapeutic effects against peptic ulcers and gastric cancer in H. pylori-infected individuals (37). Genistein present in soy was tested with various other natural flavonoids and was found to inhibit cell proliferation in estrogen receptor positive breast cancer cells. Another such flavonoid is Quercetin which is found effective against breast cancer and is effective only in water soluble form (38). It was also found in cell culture studies that many flavonoids could inhibit breast cancer resistance protein [BCRP, ABCG2] (39). Flavonoids are also reported to show chemopreventive effects in estrogen dependent or independent breast cancer (40). Many fruits and leafy vegetables are found to contain laemperol. Onion and pears are found to contain isorhamnetin whereas myricetin is found in berries maize and tea. Citrus fruits and vegetables are rich sources of anthocyanidins. Soya and soya products mainly includes daidzein and genistein which are the isoflavonones (41). Black tea is the rich source of flavan-3-ols. The red skin peanuts are also reported to contain some amount of flavonones.

Overview (Flavonoids)

Flavonoids are the subclass of polyphenols which are extensively dispersed in plants such as citrus fruits, berries, onions, parsley, legumes, green tea, red wine, sea buckthorn and dark chocolate. It consists of a diphenylpropane skeleton, consisting of two aromatic rings (i.e. A-ring and B-ring), each contains at least one hydroxyl group, and the two aromatic rings are connected through a three-carbon bridge, which becomes part of the six-member heterocyclic ring(4).

On the basis of their chemical structures flavonoids are classified into following (Table 1):

1. flavonoids (2-phenylbenzopyrans)
2. isoflavonoids (3-benzopyrans)
3. neoflavonoids (4-benzopyrans)(5,6)

2.1 Flavonoids

These are further divided into the following depending upon degree of oxidation and saturation present in heterocyclic ring.
2.2 Isoflavonoids
These are also of following categories:

2.3 Neoflavonoids
These comprises of the following:

Table 1.

<table>
<thead>
<tr>
<th>S No</th>
<th>Groups</th>
<th>Sub Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Flavonoids</td>
<td>Flavan
Flavanone
Flavone
Flavonol
Flavon-3–ol
Flavon-4-ol
Flavan-3,4-diol</td>
</tr>
<tr>
<td>2.</td>
<td>Isoflavonoids</td>
<td>Isoflavan
 Isoflavone
 Isoflavonol
 Isoflav 3 ene</td>
</tr>
<tr>
<td>3.</td>
<td>Neoflavonoids</td>
<td>4- arykoumarin
3,4 – dihydro-4- arykoumarin
Neoflavene</td>
</tr>
</tbody>
</table>

3. Flavonoids and Cancer
Flavonoids display an exceptional spectrum of biological activities which may affect cancer activities. These can be antiallergic, anti-inflammatory, antioxidant, antimutagenic, anticarcinogenic, and modulation of enzymatic activities (7-9). These are benign in cancer chemoprevention and may acts as potential therapeutic agents (10). Carcinogenesis is a multistep process. Its steps can be summarised as:

a) Initiation: It is an accelerated phase which includes interaction of DNA with carcinogenic material.
b) Promotion: The abnormal cells flourish and grow.
c) Progression: It is the final stage in which premalignant cells into neoplastic cells (11).

Flavonoids are most widely found in photosynthesising plant cells. These are the indispensable part in human and animal diet and cannot be synthesised within body. In recent years there has been an upswing concern in the therapeutic potential of flavonoids. These are mainly due to the presence of phenolic groups (12, 13). Various edible plants have been linked to treatment of cancer (14). Various plant derived agents such as paclitaxel, docetaxel; vinblastine, vincristine; topotecan, irinotecan, etoposide are currently being used for treatment of cancer (15, 16, 17).

Plants have various flavonoids which are biologically very active and possess various therapeutic properties which outlines its necessity for determination (18). Flavonoids such as catechin, epicatechin and epigallocatechin from tea have been extracted (19). Certain flavones such as Chrysin, apigenin, Rutin, hesperitin, and luteolin glucosides are found in the fruit skins, red wine, buckwheat, red pepper, and tomato skin (20-23). Flavanols such as kaempferol, quercetin, myricetin, and tamarixetin are found in Onion, red wine, olive oil, berries, and grapefruit (22). Citrus fruits, grapefruits, lemons, and oranges possess flavonone such as naringin, naringenin, taxifolin, and hesperidin (24, 25). Soyabeans consists of isoflavone such as genistin, daidzin (26).

Polyphenols found in tea especially in green tea have shown to reduce the risk of cancer (27). Curcumin in turmeric has been found to affect various multicellular signalling pathways which are involved in proliferation, invasion, survival, apoptosis and inflammation (28). Various other plants and their phytochemicals effective against cancer are listed in the following table.
3.1 In vitro studies

Many researchers have conducted various in vitro studies on the potential anticancer activity of flavonoids. Biphase effects of isoflavones have been seen in proliferation of breast cancer cell culture. At concentration above 5mM genistein showed concentration dependant ability to inhibit growth and estrogen stimulated breast cancer cell proliferation. 28 flavonoids were studied by Hirano and co-workers against acute myeloid cell line HL 60 and was compared with anti proliferative activity and cytotoxicity with four clinical anticancer agents. Out of these 28 flavonoids eight show suppressive effects on HL 60 cell growth. The rest had potent anticancer activity (42). 55 flavones were evaluated by Cushman and Nagarthnam and studied their toxicity in five cancer cell cultures and were found effective against A-549 lung carcinoma, MCF-7 breast carcinoma, HT-29 colon adenocarcinoma, SKMEK-5 melanoma and MLM melanoma (43). 27 out of these were of citrus origin and were found to inhibit tumor cell proliferation.

3.2 In vivo studies

Flavonoids have also shown to exhibit anticancerous activities in vivo studies. They may inhibit carcinogenesis in any stage of carcinoma. Animal and other cellular model investigations showed that certain flavonoids inhibit tumor initiation and progression. A novel research showed that fermented soy milk contains large amounts of genistein and daidzein which were given to rats of 7 weeks of age showed to inhibit mammary tumorgenesis which was induced artificially by 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (44). Mammographic breast density can be used as biomarkers for estrogenic and anti estrogenic effects of a particular treatment in breast tissue. Consuming dietary supplements including red clover derived isoflavonones for 12 months did not show any increase in mammographic breast density in women experiencing menopause suggesting that there is no effects of estrogenic and anti estrogenic effects on breast (45).

CONCLUSION

Flavonoids have a wide range of therapeutic effects. The impact of flavonoids has been seen widely during the avalanche of immunological events which are correlated with the advancement and progression of cancer. A methodical mechanism is to be developed so as to understand mechanism of action of flavonoids when they enter various cell organelles and tissues. Flavonoids are probable to influence various biological events in cancer including apoptosis, vascularization, cell differentiation, cell proliferation etc. Various dietary flavonoids show anti tumor activity during in vivo studies whereas these show repression in vivo studies. Various potent flavonoids are to be studied and extracted for elucidating various other natural ways in treating cancer. Further studies should be conducted so as to validate the traditional ways of treating cancer. In the past many efforts are made to get various anticancerous plants containing flavonoids and further studies are to be made to get satisfactory results. For these a number of medicinal plants can be screened and can be further worked on so that in vitro and in vivo studies can be conducted providing new insights for fighting against cancer.

REFERENCES

Savouret JF, Quesne M.

azo, and the French paradox for
J Peterson et.al
Fagopyrum esculentum
avonols in tomatoes and

ets, and the French paradox for

vessel and the French paradox for

Hara Y, Luo SJ, Wickremasinghe RL, Yamanishi T. Special

S. Dixit et al.

Innovare Journal of Food Sciences, Vol 5, Issue 4, 2017

Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, et al. A
flavonoid glycoside isolated from Similax china L.
Rhizome in vitro anticancer effects on human cancer cell
lines. J Ethnopharmacol. 2007;113:11–24. [pubmed]

Attoub S, Hassan AH, Vanhoecke B, Jatini R, Takahashi T,
Gaben AM, et al. Inhibition of cell survival, invasion, tumor
growth and histone deacetylase activity by the dietary
flavonoid luteolin in human epithelial cancer cells. Eur J
Pharmacol. 2011;651:18–25. [pubmed]

10. Total Phenolics and Total Flavonoids in Selected Indian
Medicinal Plants C. T. Sulaiman’ and Indira Balachandran ,

of phenolic constituents of biological interest in red wines
by high-performance liquid chromatography. Journal of

buckwheat (Fagopyrum esculentum Moench) seeds and
determination by capillary electrophoresis. Journal of
Agricultural and Food Chemistry. 1999;47(11):4649–
4652. [pubmed]

22. Stewart AJ, Bozsonet S, Mullen W, Jenkins GL, Lean ME,
Crozier A. Occurrence of flavonols in tomatoes and
tomato-based products. Journal of Agricultural and
Food Chemistry. 2000;48(7):2663–2669. [pubmed]

23. Hertog MGL, Hollman PCH, Katan MB. Content of
potentially anticarcinogenic flavonoids of 28 vegetables
and 9 fruits commonly consumed in the Netherlands.

24. Miyake Y, Shimoj K, Kumazawa S, Yamamoto K, Kinze N,
Osawa T. Identiﬁcation and antioxidant activity of
flavonoid metabolites in plasma and urine of eriocitrin

25. . Rousseff RL, Martin SF, Youtsey CO. Quantitative survey of
narin rutin, naringin, hesperidin, and neohesperidin in

26. Reini K, Block G. Phytoestrogen content of foods: a

27. Plant Phytochemicals as Epigenetic Modulators: Role in
Cancer Chemoprevention, Vijay S. Thakur, Gauri
Deh, Melissa A. Babcock, and Sanjay Gupta. [AAPS J]. 2014
Jan; 16(1): 151–163. [PMC]

inhibits proliferation, invasion, angiogenesis and
metastasis of different cancers through interaction with

Oct; 269(2):291–304. [pubmed]

Attenuation of multi-targeted proliferation-linked signaling by 3,3,5-triodolylmethane (DIM) from bench to
clinical. Mutat Res. 2011;728:47–66. [PMC free
article] [pubmed]

31. Multi-targeted therapy of cancer by genistein (review).
269(2):226–42. [pubmed]

32. Review. Molecular targets of dietary phenethyl
isothiocyanate and sulforaphane for cancer

33. Resveratrol and cancer: a review. Savouret JF, Quesne M
Biomed Pharmacother. 2002 Mar; 56(2):94–7 [PMC]

34. Tomatoes. tomato-based products, lycopene, and cancer:
review of the epidemiologic literature. Giovannucci E J

35. Wine, alcohol, platelets, and the French paradox for

36. Flavonoids: a review of probable mechanisms of action
and potential applications. Nijveldt RJ, van Nood E, van
Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA Am

37. Anti-helicobacter pylori flavonoids from licorice extract.
Fukai T, Marumo A, Kaitou K, Kanda T, Terada S, Nomura

38. http://www.allcancerguide.com/2015/07/flavonoids-in-
breast-cancer.html

39. http://dmd.aspetjournals.org/content/33/3/341.full

40. Breast Cancer and Flavonoids - A Role in Prevention.
Hitomi Takemura, Hiroyuki Sakakibara, Shunsuke
Yamazaki and Kayoko Shimoi

41. Flavonoids intake and breast cancer risk: a case–control

42. Natural flavonoids and lignans are potent cytostatic
agents against human leukemia HL-60 cells. Hirano T,

43. Cytotoxicities of some flavonoid analogues. Cushman M,

44. Inhibitory effects of bifidobacterium-fermented soy milk
on 2-amino-1-methyl-6-phenylimidaz(4,5-b)pyrindleuced
rat mammary carcinogenesis, with a partial
contribution of its component isoflavones. Ohta T,
Nakatsugi S, Watanabe K, Kawamori T, Ishikawa F,
Morotomi M, Sugie S, Toda T, Sugimura T, Wakahayashi K
Carcinogenesis 2000;21:937–941

45. Anti-cancer potential of flavonoids: recent trends and
future perspectives. Priya Batra• Anil K Sharma.