ABSTRACT

Objective: To explore the micro morphology and physio chemical parameters of the leaves of Psidium guajava Linn. (Myrtaceae) – Lucknow-49 variety.

Methods: Macroscopy, microcopy, physicochemical analysis, preliminary phytochemical screening and other WHO recommended parameters for standardizations were performed.

Results: Leaves (5-15 cm x 4-6 cm) are dorsiventral, oblong – elliptic, dull grey to yellow green with entire margin, obtuse to bluntly acuminate apex and rounded to subcuneate base with short petiole. Microscopic evaluation revealed the presence of paracytic stomata, three layers of wide rectangular cells, secretory cavity, vascular bundle, palisade mesophyll. Vein islet numbers, vein termination numbers, stomatal number, stomatal index and other physico chemical tests like ash values, loss on drying, extractive values were determined. Preliminary phytochemical screening showed the presence of sterols, tannins, proteins and amino acids, flavonoids, volatile oil, terpenoids, saponin, guajanoic acid and guava coumaric acid.

Conclusion: Microscopic analysis was informative and provides useful information in the botanical identification, standardization for purity & quality and immense value in authentication of the leaf.

Keywords: Psidium guajava, Myrtaceae, Microscopical evaluation, Phytochemical analysis.

INTRODUCTION

Psidium guajava Linn commonly called as poor man apple. The leaves of P. guajava really do not have any match as a cheap natural and easily available plant. It is traditionally known to be useful for the treatment of wide panel of diseases like ulcers, wounds, astrin gent, anti- emotic, cholera, epilepsy etc[1]. Leaf is traditionally used for antispasmodic, antiseptic, fever, malaria [2], anti-inflammatory [12,13], gout [14], hypoglycaemic [15], headache, fever, gonor rhoea, dysmenorrhea [16], haemostatic [17], antihypertensive [18], analgesic [19], hepatoprotective [20] and antiqogulant[21]. It was reported that fresh leaves contains Guajavarin, isoquercetin, hyperin, quercetrin, quercetin 3-o-gentiobioside [22]. Leaves also contains two triterpenoids, guavacacid and guava coumaric acid along with six known compounds 2 alpha hydroxyursolic acid, jacoumaric acid, isonericoumaric acid, asiatic acid, 1,6-lactitol D and beta sitosterol – 3-o – beta D glucopyranoside [23]. In short, there is good level of traditional and experimental evidences to support various claims and advantages of this widely available plant. An investigation to explore its pharmacognostic examination is inevitable. Hence, in this work we report an attempt on microscopic evaluation, physicochemical determination and phytochemical screening for the standardization and quality assurance purposes of this cultivar.

MATERIALS AND METHODS

Chemicals

Formalin, acetic acid, ethyl alcohol, chloral hydrate, toluidine blue, phloroglucinol, glycerin, hydrochloric acid and all other chemicals used in this study were of analytical grade.

Plant collection and authentication

The leaves of the healthy plant Psidium guajava Linn. (Lucknow-49) selected for our study was collected from Horticulture Department, Madurai, Tamilnadu, India and was authenticated by Dr. Stephen, Department of Botany, American college, Madurai and Dr. P. Jayaraman, Director of Plant Anatomy Research Institute, Tambaram, Chennai, Tamilnadu, India.

Microscopic analysis

Macroscopic observation of the plant was done. The shape, size, surface characters, texture, colour, odour, taste etc was noted [24].

Microscopic analysis

Transverse section midrib region of fresh leaf pieces were cut and fixed in FAA and then dehydrated by employing graded series of ethyl alcohol and tertiary butyl alcohol [25]. Sections were taken using microtome. Permanent mount was prepared using safranin fast green double staining technique [26]. In order to supplement the description part the photomicrographs in different magnifications of all necessary cells and tissues were taken with NIKON Coolpix 8400 digital camera and Labphot2 microscopic unit.

Powder microscopy

Coarse powder of the leaf was used to study the microscopical characters of the leaf powder [27, 28].

Physicochemical analysis

Total ash, acid insoluble ash, water soluble ash, loss on drying, extractive values and leaf constants such as vein islet numbers, vein terminal number, stomatal number and stomatal index, palisade ratio were determined [29-31].
Preliminary phytochemical screening

Preliminary phytochemical screening was carried out to find out the presence of various phytoconstituents using standard procedure [32, 33].

RESULTS

Macroscopy

Psidium guajava is a large dicotyledonous shrub or small evergreen tree, generally 3-10m high with many branches and crooked stems (Fig 1). Leaves (5-15cm × 4-6 cm) are opposite, simple, stipules absent, oblong – elliptic, dull grey to yellow green with entire margin, obtuse to bluntly acuminate apex and rounded to subcuneate base with short petiole (Fig 2). Flowers

Figure 1: Habit of P. guajava L

Figure 2: Dorsal and ventral view of the leaves of P. guajava - (Lucknow-49)

Figure 3: T.S through midrib of P. guajava L. leaves (Lucknow-49)

Figure 4: T.S through midrib of P. guajava L. Leaves – A portion enlarged - (Lucknow-49)

Figure 5: T.S of Lamina (Lucknow-49)
Microscopy of the leaf

Transverse section (T.S) of the leaves through the midrib showed the following tissue systems.

Shape: Leaves are dorsiventral with prominent midrib, 1.5 mm thick, U shaped concave adaxial side and slightly wavy, semicircular abaxial side (Fig 3).

Vascular bundle: Vascular strand is broad and bowl shaped, 1.3 mm wide, 60 µm thick. Xylem elements are narrow and thin walled. Metaxytem 30 µm wide (Fig 4).

Lateralvein: Vascular bundles of the lateral veins are small, collateral having a thin layer of parenchymatous bundle sheath.

Mesophyll: Two layer of narrow cylindrical compact palisade cells (70 µm height) and two to three layers of vertically oblong palisade like spongy parenchyma. Tannin content is less.

Ground tissue: Parenchymatous, thin walled, circular, less compact with intercellular spaces which most of them with small masses of tannin body. Narrow secretory cavities are seen in the periphery.

Epidermis: 250 µm thick. The adaxial epidermis zone consists of an outermost thin layer of small rectangular thin walled cells followed by four layers of dilated polyhedral compact cells with prominent wall. The abaxial epidermis is thin with small semicircular cells (Fig 5).

Powder microscopy: The analysis of the dried powder of the leaf showed paracytic stomata, layers of wide rectangular cells, xylem, phloem, secretory cavity, parenchymal cells and fragment of palisade mesophyll (Fig 6).

Physicochemical analysis

Physicochemical parameters were found as follows: total ash 11.12% w/w, acid insoluble ash 1.51, water soluble ash 2.83% w/w, the extractive values were ethanol 19.99% w/w, water 25.15% w/w, 2.66%, benzene 4.31% w/w, ethyl acetate 5.74% w/w, chloroform 5.36% w/w. Loss on drying was 9.8% w/w and foreign organic matter was nil. Leaf constants were as follows vein islet number 2.5, vein termination number 4.3, stomatal number (lower epidermis) 47.1, stomatal number (upper epidermis) 29.7, stomatal index (lower epidermis) 19.5, stomatal index (upper epidermis) 20.

Preliminary phytochemical screening

Preliminary phytochemical screening showed the presence of flavonoids, terpenoids, sterols, tannin, volatile oil, saponins, proteins and amino acids, carbohydrates, reducing sugars, and absence of alkaloids, cyanogenic glycosides, anthraquinone glycosides, cardiac glycosides, mucilage and fixed oil.

DISCUSSION

Sensory evaluation plays a key role in determining the suitability or denunciation of a crude drug. Organoleptic testing of a crude drug is mainly for qualitative evaluation based on the observation of morphological and sensory profile. In this report, various morphological, microscopical, physicochemical standards have been developed. Hence we have undertaken this study to serve as a tool for developing standards for identification, quality and purity of Psidiumguajava leaves. Adulteration and misidentification of crude drugs can cause serious health problems to consumers and legal problems for the pharmaceutical industries. It can be conducted via a variety of techniques, namely macro and microscopic identification and chemical analysis especially description of microscopic botanical aspects to determine definitively the proper species of plant material while it is still in its non-extracted form. The observation of cellular level morphology or anatomy is a major aid for the authentication of drugs. These characters are especially important for identification of powdered drugs, because in these cases most of the morphological diagnostic features are lost. Microscopic evaluation is one of the simplest and cheapest methods for the correct identification of the source of the materials. The macroscopic and organoleptic characters of the leaf can serve as diagnostic parameters. Microscopic evaluation showed U shaped concave adaxial side and slightly wavy, semicircular abaxial side. Xylem elements are narrow and thin walled. Mesophyll contains two layers of narrow cylindrical compact palisade cells and two to three layers of vertically oblong palisade like spongy parenchyma. Tannin content is less. Narrow secretory cavities are seen in the periphery. The ash values are particularly important to find out the presence or absence of foreign inorganic matter such as metallic salts and or silica (earthy matter). Acid insoluble ash provides information about non-physiological ash produced due to adherence of inorganic dirt, dust to the crude drug. Increased acid insoluble ash indicates adulteration due to dirt, sand (or) soil. The extractive values are primarily useful for the determination of exhausted or adulterated drug and helpful in the detection of adulteration. Phytochemical evaluation and molecular characterization of plants is an important task in medicinal botany and drug discovery. Preliminary phytochemical screening showed the presence of steroids, flavonoids, terpenoids, saponins, volatile oil, protein and amino acids, carbohydrates, and absence of alkaloids, fixed oil, mucilage and glycosides. Dried powder of the leaf showed paracytic stomata, three layers of wide rectangular cells, secretory cavity, conical and flagellate trichome, parenchymal cells and fragment of palisade mesophyll.

CONCLUSION

The study of Pharmacognostical features of Psidiumguajava Linn. (Lucknow–49) had shown the standards which will be useful for the detection of its identity and authenticity. The other study viz. physical evaluation, preliminary phytochemical test add to its quality control and quality assurance for proper identification.

Conflict of interest statement:

We declare that we have no conflict of interest.
ACKNOWLEDGEMENT

The author thanking for all helping hands particularly Dr.Stephen, Department of Botany, American college, Madurai for plant authentication and Dr.P.Jayaraman, Director of Plant Anatomy Research Institute, Tambaram, Chennai for microsopical studies.

REFERENCES