ABSTRACT

Objective: To explore the micro morphology and physio chemical parameters of the leaves of Psidium guajava Linn. (Myrtaceae) – Lucknow- 46 variety.

Methods: Macroscopy, microscopy, physicochemical analysis, preliminary phytochemical screening and other WHO recommended parameters for standardizations were performed.

Results: Leaves (5-15 cm × 4-6 cm) are dorsiventral, oblong – elliptic, dull grey to yellow green with entire margin, obtuse to bluntly acuminate apex and rounded to subacuminate base with short petiole. Microscopic evaluation revealed the presence of paracytic stomata, three layered thin walled tabular epidermal cells and wider spindle shaped sub epidermal layers with frequent calcium oxalate druses, three layers of narrow palisade cells, vertically stretched collateral vascular bundles with sclerenchyma bundle caps and spongy parenchyma is not distinct but contains abundant tannin content, circular secretory cavities, calcium oxalate druses in ground tissue, broadly bowl shaped vascular bundles, xylem vessels, phloem, and fibres. Vein islet numbers, vein termination numbers, stomatal number, stomatal index and other physico chemical tests like ash values, loss on drying, extractive values were determined. Preliminary phytochemical screening showed the presence of sterols, tannins, proteins, carbohydrates and absence of alkaloids, mucilage, glycosides, fixed oil.

Conclusion: Microscopic analysis was informative and provides useful information in the botanical identification, standardization for purity & quality and immense value in authentication of the leaf.

Keywords: Psidium guajava, Myrtaceae, Microscopical evaluation, Physicochemical analysis.

INTRODUCTION

Psidium guajava, Linn commonly called as poor man apple. The leaves of P. guajava really do not have any match as a cheap natural and easily available plant. It is traditionally known to be useful for the treatment of wide panel of diseases like ulcers, wounds, astrigent, antiemetic, cholera, epilepsy etc [1]. Leaf is traditionally used for antispasmodic, anodyne, febrifuge [2], scurvy [3], malaria [4], anti septic [5], antibacterial [6-9], antifungal [10] dysentery, diarrhoea [11,12], anti-inflammatory [13-15], gout [16], hypoglycaemic [17], headache, fever, gonorrhoea, dysmenorrhea [18], haemostat [19], antihypertensive [20], analgesic [21], hepatoprotective [22] and anticoagulant [23].

It was reported that fresh leaves contains: Guajavarin, isoquercetin, hyperin, quercetrin, quercetin 3-O-gentiobioside [24]. Leaves also contains two triterpenoids, guanvonic acid and guauomorphic acid along with six known compounds 2 alpha hydroxy ursolic acid, jacuomoric acid, isoneurioumacr acid, asiatic acid, illetatofol D and beta sitosterol – 3-O – beta D glucopyranoside [25]. In short, there is good level of traditional and experimental evidences to support various claims and advantages of this widely available plant. An investigation to explore its pharmacognostic examination is inevitable. Here, in this work we report an attempt on microscopic evaluation, physicochemical determination and phytochemical screening for the standardization and quality assurance purposes of this cultivar.

MATERIALS AND METHODS

Chemicals

Formalin, acetic acid, ethyl alcohol, chloral hydrate, toludine blue, phloroglucinol, glycerin, hydrochloric acid and all other chemicals used in this study were of analytical grade.

Plant collection and authentication

The leaves of the healthy plant Psidium guajava Linn. (Lucknow – 46) selected for our study was collected from Horticulture Department, Madurai, Tamilnadu, India and was authenticated by Dr. Stephen, Department of Botany, American college, Madurai and Dr. P. Jayaraman, Director of Plant Anatomy Research Institute, Tambaram, Chennai, Tamil nadu, India.

Macroscopic analysis

Macroscopic observation of the plant was done. The shape, size, surface characters, texture, colour, odour, taste etc was noted [24].

Microscopic analysis

Transverse section midrib region of fresh leaf pieces were cut and fixed in FAA and then dehydrated by employing graded series of ethyl alcohol and tertiary butyl alcohol [25]. Sections were taken using microtome. Permanent mount was prepared using safranin fast green double staining technique [26]. In order to supplement the descriptive part the photomicrographs in different magnifications of all necessary cells and tissues were taken with NIKON Coolpix 8400 digital camera and Labphot 2 microscopic unit.

Powder microscopy

Coarse powder of the leaf was used to study the microscopical characters of the leaf powder [27, 28].

Physicochemical analysis

Total ash, acid insoluble ash, water soluble ash, loss on drying, extractive values and leaf constants such as vein islet numbers, vein
terminal number, stomatal number and stomatal index, palisade ratio were determined [29-31].

Preliminary phytochemical screening:

Preliminary phytochemical screening was carried out to find out the presence of various phytoconstituents using standard procedure [32, 33].

RESULTS

Macroscopy

Psidium guajava is a large dicotyledonous shrub or small evergreen tree, generally 3-10 m high with many branches and crooked stems (Fig 1). Leaves (5-15 cm × 4-6 cm) are opposite, simple, stipules absent, oblong – elliptic, dull grey to yellow green with entire margin, obtuse to bluntly acuminate apex and rounded to subcuneate base with short petiole (Fig 2). Flowers are white, borne singly or in small clusters, 2-3 cm wide, with 4 or 5 white petals which are quickly shed, and a prominent tuft of perhaps 250 white stamens. Fruit is small, 3 to 6 cm long, pear-shaped, reddish-yellow when ripe.

Microscopy of the leaf:

Transverse section (T.S) of the leaves through the midrib showed the following tissue systems.

- **Shape:** Leaves are dorsiventral with prominent midrib, oblong to elliptic, acuminate. 1.3 mm thick, widely concave adaxial side and tangentially oblong abaxial side and semi circular. Lamina is laterally spreading (Fig 3).
- **Vascular bundle:** Broadly bowl shaped vertical- 700 µm and 1.6 mm horizontal. Xylem is fairly wide thin walled angular in outline occur in compact radial lines. Metaxylem - 30 µm wide. Phloem - 50 µm wide, encircled around the xylem arc (Fig 4).
- **Lateral vein:** Vascular strands of lateral veins vertically stretched, collateral with sclerenchyma bundle caps.
Mesophyll: Three layers of narrow compact cylindrical palisade cells. Spongy parenchyma is not distinct; two layered vertically elongated compact cells. Tannin content is abundant. Calcium oxalate druses are frequent in the dilated cells.

Ground tissue: Parenchymatous, thin walled compact and tannin content not evident. Secretory cavities occur in the outer zone of adaxial midrib. Calcium oxalate druses are common with dilated ground cells.

Epidermis: 230µm thick, smooth uniformly even. Upper epidermal cells consist of oblong spindle shaped outer layer and 2 to 3 layers of wider rectangular cells (80–100µm). Lower epidermis is thin with elliptic narrow cells (15µm thick) (Fig 5).

Powder microscopy: The analysis of the dried powder of the leaf showed paracytic stomata, calcium oxalate druses, circular secretory cavities, xylem vessels, phloem, and fibers and tannin containing cells.

Physicochemical analysis
Physicochemical parameters were found as follows: total ash 11.05%w/w, acid insoluble ash 1.51, water soluble ash 2.75%w/w, ethanol soluble extractive value 17.98%w/w, water soluble extractive value 20.46%w/w, petroleum ether soluble extractive 2.61%, benzene soluble extractive 4.42%w/w, ethyl acetate soluble extractive 5.61%w/w, chloroform soluble extractive 5.2%w/w, loss on drying 9.7%w/w and foreign organic matter was nil. Leaf constants were as follows vein length number 3.5, vein termination number 4.3, stomatal number (lower epidermis) 42.4, stomatal number (upper epidermis) 36.2, stomatal index (lower epidermis) 19.3, stomatal index (upper epidermis) 20.1.

Preliminary phytochemical screening
Preliminary phytochemical screening showed the presence of flavonoids, terpenoids, sterols, tannin, volatile oil, saponins, proteins and amino acids, carbohydrates, reducing sugars, and absence of alkaloids, cyanogenic glycosides, anthroquinone glycosides, cardiac glycosides, mucilage and fixed oil.

DISCUSSION
Sensory evaluation plays a key role in determining the suitability or denunciation of a crude drug. Organoleptic testing of a crude drug is mainly for qualitative evaluation based on the observation of morphological and sensory profile. In this report, various morphological, microscopic, physicochemical standards have been developed. Hence we have undertaken this study to serve as a tool for developing standards for identification, quality and purity of Psidium guajava leaves.

Adulteration and misidentification of crude drugs can cause serious health problems to consumers and legal problems for the pharmaceutical industries. It can be conducted via a variety of techniques, namely macro and microscopic identification and chemical analysis especially description of microscopic botanical aspects to determine definitively the proper species of plant material while it is still in its non extracted form. The observation of cellular level morphology or anatomy is a major aid for the authentication of drugs. These characters are especially important for identification of powdered drugs, because in these cases most of the morphological diagnostic features are lost. Microscopic evaluation is one of the simplest and cheapest methods for the correct identification of the source of the materials. The macroscopic and organoleptic characters of the leaf can serve as diagnostic parameters. Broadly bowl shaped vascular bundle, Xylem is fairly wide thin walled angular in outline occur in compact radial lines. Vascular strands of lateral veins vertically stretched, collateral with sclerenchyma bundle caps. Calcium oxalate druses are common with dilated ground cells were seen.

The ash values are particularly important to find out the presence or absence of foreign inorganic matter such as metallic salts and or silica (earthy matter). Acid insoluble ash provides information about non-physiological ash produced due to adherence of inorganic dirt, dust to the crude drug. Increased acid insoluble ash indicates adulteration due to dirt, sand [or] soil. The extractive values are primarily useful for the determination of exhausted or adulterated drug and helpful in the detection of adulteration. Physicochemical evaluation and molecular characterization of plants is an important task in medicinal botany and drug discovery. Preliminary phytochemical screening showed the presence of steroids, flavonoids, terpenoids, saponins, volatile oil, protein and aminoacids, reducing sugars, carbohydrates, and absence of alkaloids, fixed oil, mucilage and glycosides. Dried powder of the leaf showed paracytic stomata, calcium oxalate druses, three layers of wide rectangular cells, circular secretory cavities, broadly bowl shaped vascular bundles, xylem vessels and phloem.

CONCLUSION
The study of Pharmacognostical features of Psidium guajava Linn. (Lactucon–46) had shown the standards which will be useful for the detection of its identity and authenticity. The other study viz. physical evaluation, preliminary phytochemical test add to its quality control and quality assurance for proper identification.

Conflict of interest statement
We declare that we have no conflict of interest.

Acknowledgement
The author thanking for all helping hands particularly Dr.P.Jayaraman, Director of Plant Anatomy Research Institute, Tambaram, Chennai for microscopical studies.

REFERENCES

