COMPARATIVE ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES OF BENZENE EXTRACT OF THREE MEDICINAL PLANTS

SASIKA RA, SANGEETHA K, MEENA K S*

Department of Chemistry, Bioinformatics Infrastructure Facility Centre of DBT Queen Mary's College (Autonomous) Chennai, Tamil Nadu, India. Email: qmcbif@gmail.com

ABSTRACT

Objective: This study was carried out with an objective to investigate the antibacterial and antifungal potential of three Indian medicinal plants.

Methods: Antimicrobial activity of benzene extracts of three plants namely Abutilon indicum, Plectranthus amboinicus, and Aegle marmelos were determined using agar disc diffusion method at different concentration from 5 to 30 μg/µl against two Gram-positive Staphylococcus aureus, Enterococcus faecalis and two fungal strains Aspergillus niger, Aspergillus fumigatus and compared with standard drugs norfloxacin and fluconazole, respectively.

Results: Benzene extract of fruits from A. indicum inhibited S. aureus, E. faecalis at 30 μg/µl, and leaves of P. amboinicus showed considerable inhibiting activity against the A. niger, A. fumigatus at 30 μg/µl.

Conclusion: Hence, these plants can be further used to determine the bioactive natural products that may provide as leads in the development of new drugs.

Keywords: Abutilon indicum, Plectranthus amboinicus, Aegle marmelos, Antimicrobial.

INTRODUCTION

The medicinal plants of the Indian traditional system of medicine possess various pharmacological properties and possess various active constituents such as carbohydrates, steroids, alkaloids, flavonoids, glycosides, starch, tannins, and phenolic compounds. Abutilon indicum belongs to the family of Malvaceae, is a medicinal plant, commonly known as Thuthi/Atibala, and is an erect, woody, shrubby plant widely distributed in the tropical countries [1-4]. A. indicum is used to treat piles, gonorrhea, and cough. Fruit decoction mixed with ammonium chloride is given orally with water to treat hemorrhagic Septicemia [5-8]. The main phytochemical constituents of the whole plant are carbohydrates, steroids, glycosides, flavonoids, tannins, and phenolic compounds [9]. However, few reports are available with respect to the pharmacological properties of the plant. So far, substantial studies on the antimicrobial activities of the various extracts of leaves, stem, and root have been performed. However, the fruit extract has not been explored for the antimicrobial activities [10-15].

Aegle marmelos belongs to the family of Rutaceae that has been widely used in native systems of Indian medicine due to its various medicinal properties [16]. Leaves are useful in jaundice and in the treatment of wounds. The extract of leaves is beneficial in the treatment of leukorrhea, conjunctivitis, and deafness. A. marmelos leaves contain phytoconstituents such as skimmianine, aegeline, lupeol, cineol, citral, citronella, cuminaldehyde, eugenol, and marmesnine [17]. Extensive studies on the antimicrobial activities of the various extracts of leaves, stem, and root of A. marmelos have been performed whereas the leaves of benzene extract have not been explored for the antimicrobial activities [18-22].

Plectranthus amboinicus belongs to the family of Lamiaceae which is grown as a household herb in Tamil Nadu. This herb is native to East Indies and is widely cultivated in Africa and almost all tropical countries and is distributed throughout India. Leaves roots and stems are used as carminative, digestive, stomachic, anthelmintic, expectorant, diuretic, otalgia, anorexia, diarrhea, and cholera, especially in children, convulsions epilepsy, chronic asthma, bronchitis, renal and vesical calculi, and malarial fever. Previous pharmacological studies showed that P. amboinicus possesses antiepileptic, antioxidant, anti-inflammatory, leishmanial, and antimicrobial properties of the different extracts of the leaves. Therefore, it is important to access the local P. amboinicus to screen the potential biological activity, especially antimicrobial properties and volatile components of the plant [23-28].

The survey of the literature reveals that the leaves of P. amboinicus are found to be used traditionally for antimicrobial activity. However, the antimicrobial activity of benzene extract leaves of P. amboinicus has not been investigated; hence the present study was undertaken to explore the antimicrobial activity of benzene extract.

Thus, this study was designed to explore the antimicrobial activity of benzene extract of three medicinal plants namely A. indicum, A. marmelos, and P. amboinicus.

METHODS

Plant material

Fruits of A. indicum, leaves of A. marmelos, P. amboinicus samples were collected from Chennai using clean polythene bag. The fruit samples were washed in tap water and shade dried for 20 days and authenticated and deposited at Queen Mary’s College, Chennai.

Preparation of extract

The shade dried samples were crushed to get 200 g powder sample and successively extracted with 150 ml of benzene (60-75°C) in Soxhlet extractor for 18-20 hrs. Furthermore, the extract was filtered and excess solvent was evaporated using a rotary evaporator.

Test microorganisms

Clinical isolates of bacterial (Staphylococcus aureus, Enterococcus faecalis) and fungal species (Aspergillus niger, Aspergillus fumigatus)
were procured from the Bacteriology Department, King Institute of Preventive Medicine and Research, Guindy, Chennai. The culture preparations for antibacterial assay were grown on nutrient broth at 37°C for 24 hrs in the test tube in an incubator. The turbidity was measured by adjusting to 0.5 McFarland standards (10^8 CFU/ml).

Agar well diffusion method
Antibacterial activity was tested in Muller Hinton agar plates in which wells of 6 mm were cut and swabbed with different cultures. Furthermore, the cut wells were filled with different concentration of extracts (5-30 μg/μl), and norfloxacin 10 μg/μl was used as positive control. Antifungal activity was tested at different concentration of extracts (5-30 μg/μl) and positive control (fluconazole 10 μg/μl). All the plates were kept in incubation at 37°C for 24 hrs.

Statistical analysis
The antimicrobial activities were analyzed using one-way analysis of variance between the benzene extract of three plants and standard drug by SPSS version 4. Significant differences were determined by Tukey's range test.

RESULTS AND DISCUSSION
The antimicrobial activity of all the three plant extracts was examined against Gram-positive and Gram-negative bacterial and fungal strains by measuring zone of inhibition. Antifungal activity of the plant extracts was studied on the growth of A. niger and A. fumigatus presented in Figs. 1 and 2. Minimal reduction in the growth of A. niger and A. fumigatus was observed with extracts of three medicinal plants when compared to the standard drug fluconazole. The comparative antifungal activities between the three plants revealed that benzene extract of P. amboinicus and A. marmelos were appreciable than A. indicum. However, when the concentration was increased to 30 μg/μl, all the three plants showed only slight difference in their activities against A. niger.

It is noteworthy that A. marmelos exhibited significant antifungal activity to A. fumigatus at 10 μg/μl; however, at the higher concentration of 30 μg/μl, P. amboinicus exhibited superior activity than the other two plant extracts. Furthermore, at 30 μg/μl concentration, the antifungal activity against A. fumigatus was comparable to that of fluconazole. Thus, the three plants extract showed better activity only when the concentrations were increased.

The antibacterial activity of the extracts was prepared from the dried leaves of A. marmelos, dried leaves of P. amboinicus, and dried fruits of A. indicum. Sweet was carried using agar well diffusion method against Gram-positive microorganisms. The antibacterial activities of the extracts investigated against Gram-positive bacteria are presented in Figs. 3 and 4. Of the three plants tested, A. indicum exhibited significant antibacterial activity to both S. aureus and E. faecalis at 10 μg/μl. Furthermore, the activity of the extract of A. indicum was comparable to the standard drug norfloxacin at 10 μg/μl.

The antimicrobial activities between the plant extracts and standard drugs showed significance differences with p<0.05-0.01 as tested by ANOVA with post Turkey’s range test.

CONCLUSION
The study revealed that benzene extract of P. amboinicus exhibited promising antifungal activity, and A. indicum showed effective antibacterial activity to the tested organisms. Hence, it reconfirmed the potential of local plants for their usage in the treatment of bacterial diseases, and further studies are needed to determine the chemical
identity of the bioactive compounds responsible for the observed antimicrobial activity.

ACKNOWLEDGMENT

This work was supported by Bioinformatics Infrastructure Facility Centre of Department of Biotechnology, Ministry of Science and Technology, Government of India Vide Grant No. BT/BI/25/068/2012/2015.

REFERENCES